Dear users,
This is our new website
(we are launching the new one in order to improve our communication and provide better services to the editors and authors. So we will upload all data soon).
Please click here to visit our current website, and also to submit your paper:
www.ijsom.com
Thanks for your patience during relocation.
Feel free to contact us via info@ijsom.com and ijsom.info@gmail.com
|
|
|
|
|
|
Search published articles |
|
|
Showing 2 results for Sadeghi
Habibollah Mohamadi, Ahmad Sadeghi, Volume 1, Issue 2 (8-2014)
Abstract
Recently, much attention has been given to Stochastic demand due to uncertainty in the real -world. In the literature, decision-making models and suppliers\' selection do not often consider inventory management as part of shopping problems. On the other hand, the environmental sustainability of a supply chain depends on the shopping strategy of the supply chain members. The supplier selection plays an important role in the green chain. In this paper, a multi-objective nonlinear integer programming model for selecting a set of supplier considering Stochastic demand is proposed. while the cost of purchasing include the total cost, holding and stock out costs, rejected units, units have been delivered sooner, and total green house gas emissions are minimized, while the obtained total score from the supplier assessment process is maximized. It is assumed, the purchaser provides the different products from the number predetermined supplier to a with Stochastic demand and the uniform probability distribution function. The product price depends on the order quantity for each product line is intended. Multi-objective models using known methods, such as Lp-metric has become an objective function and then uses genetic algorithms and simulated annealing meta-heuristic is solved.
Mohammad Mirabi, Nasibeh Shokri, Ahmad Sadeghieh, Volume 3, Issue 3 (11-2016)
Abstract
This paper considers the multi-depot vehicle routing problem with time window in which each vehicle starts from a depot and there is no need to return to its primary depot after serving customers. The mathematical model which is developed by new approach aims to minimizing the transportation cost including the travelled distance, the latest and the earliest arrival time penalties. Furthermore, in order to reduce the problem searching space, a novel GA clustering method is developed. Finally, Experiments are run on number problems of varying depots and time window, and customer sizes. The method is compared to two other clustering techniques, fuzzy C means (FCM) and K-means algorithm. Experimental results show the robustness and effectiveness of the proposed algorithm.
|
|
|
|
|
|