Volume 11, Issue 3 (Vol. 11 No. 3 Autumn 2017 2018)                   2018, 11(3): 23-52 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bazyar M H, Ebrahimi M, Zamani Lenjani M, Makarchian M.  The Effect of Rice Husk Ash on Mechanical Properties of Clayey Soils Stabilized with Lime in the Presence of Sulphate . Journal of Engineering Geology 2018; 11 (3) :23-52
URL: http://jeg.khu.ac.ir/article-1-2721-en.html
Abstract:   (7368 Views)
Geotechnical engineers, in many cases face with low strength or high swelling potential of clayey soils. Stabilization methods are used to improve the mechanical properties of this type of soils. Lime and cement are the most popular materials used in chemical stabilization of clayey soils. If sulphate exists in the stabilized clayey soil with lime, or if soil is exposed to sulphates, problems such as strength reduction and swelling increase will occur. Reuse of industrial residual such as Rice Husk Ash (RHA) can be beneficial from the economy point of view. RHA includes a proper amount of silica with high specific surface area which is very suitable for activating the reaction between the soil and lime. In this paper, chemical stabilization of gypsum clays using lime and RHA is addressed Sulphates exist in the constitution of the soil. Unconfined compression strength and swelling potentials of the stabilized soil are evaluated. The results of this study indicate that RHA has positive impacts on improving mechanical properties of the gypsum clays stabilized with lime. From the view point of strength and swelling characteristics, and economy, addition of 6–8% lime and 8-10% RHA as an optimum amount is recommended.
Full-Text [PDF 737 kb]   (1995 Downloads)    
Subject: Geotecnic
Received: 2017/11/1 | Accepted: 2017/11/1 | Published: 2017/11/1

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb