Search published articles


Showing 2 results for Ahmadzadeh

, Mohamad Ghafoori, Javad Ahmadzadeh, Salameh Afshar,
Volume 10, Issue 1 (Vol. 10, No. 1 Spring 2016 2016)
Abstract

In tunnelling in soil mass, in groundwater existing mode, liquefaction, elastic displacements and settlement in soils upon the tunnel, are the risks may attack the excavated underground space stability. In this case study that were performed on second line of Mashhad city subway route, information catched from Standard Penetration Test, in situ and laboratorial tests, were used to optimum numerical values search for soil engineering parameters that could optimize the TBM stationing level. In order to this goal attaining, intelligent, numerical and probabilistic methods were used and the reliability of intelligent and numerical methods with the Safety Factors of tunnel stability, investigated simultaneously. The results were denoting the accordance of intelligent models such as Genetic Algorithm (GA) and Multi objective Genetic Algorithm with Finite Element model's output. So these models could be complement of each others in planning and designing of tunnels and using of them advised in tunneling and excavations.


Ahmadzadeh, R Bagherpour, Saeed Mahdevari,
Volume 10, Issue 2 (Vol. 10, No. 2 Summer 2016 2016)
Abstract

Because most part of Iran country is located in a dry climate, construction of water conveyance tunnels is inevitable. One of the major challenges in the construction of these tunnels is inflow of water into the tunnel during the construction and operation phase. The Rozieh water conveyance tunnel whose length is 3200 meters is a part of water conveyance project to the Semnan city and it is located 30 k NE of Semnan city. In accordance with the drilled boreholes, the tunnel route has been classified into eight zones from the geotechnical view. Then the permeability coefficients of host rock were calculated using back analysis approach on the basis of numerical simulation results and water inflow quantity during the construction phase. A parametric study was done on the lining and cement injection zone permeability and the thickness of cement injection zone. According to this study, the effect of injection zone thickness variation on the water inflow quantity is negligible. So with the assumption of 3 meters thickness for the injection zone, the permeability coefficient of host rock after injection were evaluated. Dependent on the initial rock permeability, cement injection could reduce the rock permeability 10 to 1000 times. In addition, the water inflow into the tunnel was calculated using hydro-mechanical coupling analysis. According to this analysis, the water inflow calculated by the hydro-mechanical coupling analysis is 50 to 70 percent less than the hydraulic analysis.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb