Search published articles


Showing 5 results for heidari

, Greza Khanlari, M Heidari, Yazdan Mohebi, Reza Babazadeh,
Volume 7, Issue 2 (3-2014)
Abstract

Awareness of orphological features of rivers is necessary for recognition of river behavior and optimum application of rivers. Overall catchment physiografy have important role for determination factors such as floods, erodible and sediment mutagenicity. In this study in order to understand the behavior of Gamasiab River in the east of Kermanshah province, geomorphologic features of this river has been considered. Study of engineering geomorphologic properties is done by using existing data from previous studies, site visit and field perceptions, study of geology and topography maps. Physiographic properties of catchment, channels morphologic properties and geology conditions in this region have been studied. In this research, several parameters such as average width, environment, area, hydrogeologic coefficient, catchment form, maximum, minimum and mean high, and longitudinal slope has calculated. Also status of drainage density of this river has been investigated and time to focus calculated. Finally this river review and classified according to various classifications for rivers
Aliakbar Momeni, Gholamreza Khanlari, Mojtaba Heidari, Yasin Abdilor,
Volume 11, Issue 1 (Vol. 11, No. 1 Spring 2017 2017)
Abstract

./files/site1/files/7Extended_Abstract.pdfExtended Abstract
 (Paper pages 135-156)
Introduction
Many civil structures (e.g. tunnel walls, bridge pillars, dam abutments and road foundations) are subjected to both static and dynamic loads. Cyclic loading leads to occurring fatigue phenomenon. Fatigue is the tendency of materials to break, or the process of damage accumulation, under cyclic loading. It was found that the dynamic fatigue strength can be reduced by 30-70 percent on average compared to uniaxial compression strength. Different materials show different response when they are subjected to cyclic loading. Some materials become stronger and more ductile, while others become weaker and more brittle. Although it is clear that the mechanical properties of rock under dynamic loads varied dramatically from those under static loads, the nature of dynamic failure in rock remains unclear, especially in cyclic loading condition. Fatigue behavior of rocks was rarely studied in respect to other materials such as steel and soil. The performed researches on fatigue behavior of rocks indicated that fatigue life will be decreased by increasing load amplitude in logarithmic and exponentially pattern. Also, strain softening is the dominated behavior of rocks against cyclic loading. Furthermore, some parameters such as maximum load level, confining pressures, amplitude, and loading frequency have considerable effects on fatigue behavior of rocks. However, available data on fatigue behavior remain insufficient for solving the practical tasks of predicting rock bursts and earthquakes. Obtained results are inconclusive and sometimes discordant. The aim of the current work was to assess tonalite rock fatigue behaviour under different loading conditions to describe the fatigue damage process of the granitic rock.
Material and methods
Several core samples were prepared to perform this research. The core samples were prepared with a L/D ratio of 2.5 with an average diameter of 54 mm. Before the fatigue tests, the physical and mechanical properties of the rocks were measured. Uniaxial compressive strength test (UCS) has been done on 5 core samples. The tests were performed in the load-control mode with a 1.6 kN/s loading rate. The tests were conducted to obtain the physico-mechanical parameters of the rocks in static loading condition, and provided a reference for subsequent dynamic tests. The cyclic tests were performed in both load and displacement control modes. To record axial and lateral strains during the fatigue tests, four strain gauges have been employed with arrangement of two axial and two laterals. Also, three acoustic emission sensors were installed on top, mean and bottom of the core samples to record cracking sound. In order to doing the tests a servocontrol Instron machine with 500 kN capacity was employed. The fatigue tests were conducted with three different maximum loads, 1 Hz frequency, and constant amplitude (0.82 of uniaxial compressive strength). The maximum stress level (the ratio of maximum cyclic stress to static strength) was varied 0.80, 0.85, and 0.90. The amplitude level (the ratio of amplitude stress to static strength) ranged from 0.50 to 0.70 and 0.90. Finally, Multi stages loading with increasing amplitude were applied for the displacement control tests. The results of fatigue tests have been evaluated by fatigue damage parameters including maximum and minimum axial strain, maximum and minimum lateral strain, tangent and secant modulus, toughness and hysteresis energy.
Results and discussion
The obtained results indicated that during fatigue process failure occurs below the maximum strength loading condition as a result of accumulative damage. Analysis of the fatigue test results showed that the fatigue failure consisted of three stages: fatigue crack formation (initiation phase I), stable crack propagation (uniform velocity phase II), and unstable crack propagation resulting in a sudden breakdown (accelerated phase III). By comparing the axial and lateral deformation, it was found that lateral deformation is more sensitive to fatigue. At higher stress levels, considerable part of fatigue life is response to crake development, whereas at lower stress levels, crack acceleration phase of fatigue life is distinguishable. Descending trend of loading and unloading tangent modulus shows a scatter pattern. This behavior may be related to the calculation method and loading condition, as well as microstructure and behavior of the rock mass. In spite of tangent modulus results, the three-stages of damage process (especially phase I and II) for secant modulus in both loading and unloading conditions are clear. The result is due to the method of calculation and increase in axial strain with increasing number of cycles. Brittle behavior of this type of rock leads acceleration phase to be hidden and unclear in most of fatigue damage parameters. A dramatic decrease of toughness and hysteresis energy in the first few cycles is due to the closing of pre-existing micro fractures. In fact, during the initial cycle, the rock behaves in a more ductile fashion than in the next few cycles. Thereafter, toughness begins to increase slowly, then steadily, and finally rapidly. A similar behavior was found for hysteresis energy as well. This fact indicated that cracks generated in parallel to loading direction. Fatigue displacement control tests show a strain softening behavior for the granitic rocks. This behavior is highlighted in variation of maximum stress during the tests. This parameter, especially in final step of loading, shows distinguishable decreasing trend.
Conclusion
The tonalite rocks were subjected to uniaxial cyclic loading in both load and displacement control mode. The following conclusions were drawn from this research.
-Accumulated fatigue damage occurs in an obvious three-stage process. This is the result of the micro-fracturing mechanism in the fatigue process.
-By comparing axial and lateral strain damages, it was found that crack propagation occurred in the loading direction and crack opening occurred in the lateral direction. So, among fatigue damage parameters, lateral strain shows the best three-stage fatigue damage behavior.
- Strain softening was found as rock response to cyclic displacement control loading.
Dr Ali M. Rajabi, Alireza Hossini, Alireza Heidari,
Volume 11, Issue 3 (Vol. 11 No. 3 Autumn 2017 2018)
Abstract

In many rock engineering projects, accurate identification of rock strength properties is very important. Uniaxial compressive strength is one of the most important features to describe the resistive behavior of rocks which is used as an important parameter in the design of structures especially underground openings. Determination of this parameter using direct methods, including uniaxial compressive strength tests is costly and time-consuming, and also sometimes preparation of standard samples in many rocks is difficult. In such cases, the implementation of some simple and non-destructive tests and using empirical relations can increase the evaluation speed and reduce costs. These relations even regional or local (For example within a geological formation or a single lithology) can help in the estimation of these parameters in order to be used in geotechnical projects. In this study, samples of existing limestones in south west of Tehran (Capital of Iran) were prepared and uniaxial compressive strength, point load, Schmidt hammer and Shear wave velocity tests on which have been performed. Then by the statistical evaluations of the results, the empirical relations between uniaxial compressive strength and the results of other tests are obtained. The comparison between the predicted and observed values of uniaxial compressive strength represents the validity of obtained empirical relations. The application of the proposed relations for limestones in the study area and those with similar geological conditions will provide acceptable results.
Mohammadkazem Amiri, Gholam Reza Lashkaripur, Siavash Ghabezloo, Naser Hafezimoghadas, Mojtaba Heidaritajri,
Volume 14, Issue 3 (11-2020)
Abstract

Introduction
CO2 injection in deep geological formations, such as depleted oil and gas reservoirs, in addition to the environmental benefits, is one of the effective method for enhanced oil recovery (EOR) as tertiary EOR. Presence of reservoirs with a pressure drop which require injection of gas in the southwest of Iran and having the technical and environmental effects of CO2 injection have created a huge potential for CO2 injection to EOR in this region. In the first step, to perform CO2-EOR, the geomechanical assessment is needed to find out pore pressure, in-situ stress magnitudes and orientations and fractures and faults conditions. In this paper, the initial in-situ pore pressure is predicted using modified Eaton method for 47 wells in the length of the study field and calibrated using repeat formation test and mud pressure data. In-situ stress was obtained by the poroelastic method for 47 wells in the length of the study field and calibrated using leak off test and extended leak off test. Then, the orientation of in-situ stresses is obtained based on image logs. Hydraulical and mechanical activities of fractures and faults were performed by critically-stressed-fault hypothesis
Material and Methods
In this paper, the initial pore pressure is calculated using modified Eaton method and other corrections that are proposed by Azadpour et al. (2015). The estimated initial pore pressure is validated using mud weight pressure (Pmw) and repeat formation tester (RFT) data. In-situ stresses are composed of three orthogonal principal stresses, vertical stress (SV), maximum horizontal stress (SH), and minimum horizontal stress (Sh) with specific magnitude and orientations. The magnitude of SV is calculated by integration of rock densities from the surface to the depth of interest. The poroelastic horizontal strain model is used to determine the magnitudes of the SH and Sh. Then, the estimated minimum horizontal stress from poroelastic horizontal strain model is validated against direct measurements of LOT and XLOT tests. The orientation of breakouts was determined based on compressively stressed zones observed in the UBI log and using Caliper and Bit Size (BS) logs. The hole elongates perpendicular to the SH and breakouts develop at the azimuth of Sh. Fractures and faults reactivation analyses are very important, they can potentially propagate upwards into the lower caprock and further through the upper caprock due to CO2 injection. Fractures and faults identification were performed based on image logs. Based on performed seismic interpretations by NISOC (National Iranian South Oil Company), 15 faults have been detected in the field. Fractures and faults conductivity and activity in the current stress filed affect on fluid flow and mechanical stability or instability of the CO2 injection site. Critically stressed fault hypothesis, introduced by Barton et al. (1995), states that in a formation with fractures and faults at different angles to the current stress field, the conductivity of fluids through their apertures are controlled by the interplay of principal stress orientations and fracture or fault directions. Hence, conductive and critically stressed fractures and faults in the current stress field were evaluated using critically stressed fault hypothesis. Fractures and faults are plotted in normalized 3D Mohr diagrams (normalized by the vertical stress), therefore conductive and critically stressed fractures and faults were determined.
Results and discussions
The maximum distribution of initial pore pressure was 20-25 MPa in the field and the average of initial pore pressure was 25 MPa in the field. Unlike the World Stress Map, the stress regime is normal in the reservoir. Because the Kazeroon fault and Dezful Embayment act as a strike-slip tensional basin, resulting in the subsidence of Dezful compared with other regions. The frequency distribution of calculated in-situ stress in 47 studied wells in the length of the field has been presented. The maximum frequency distribution of SV, SH and Sh were between 60-70, 50-60 and 30-40 MPa, respectively. A large amount of fracturing is observed in 20-25 m below the caprock. Based on the continuity of their low amplitude traces on the acoustic amplitude image of UBI, fractures are classified into 4 classes: discontinuous-open, continuous-open, possible-open and closed fractures. OBMI and UBI image logs processing were performed in 7 wells. As can be seen from the image log, and caliper analysis the most dominant strike of SH around the well is 27 and Sh strike is 117◦. These have two dominant orientation, some faults are along the strike of the Zagros fold-thrust belt (NW-SE) and the others are perpendicular to the Zagros fold-thrust belt strike (NE-SW).
Based on the normalized 3D Mohr diagrams it is clear that the fractures and faults that are oriented to the SH will be the most permeable, because the faults and fractures experience the least amount of stresses in the direction of SH and they have minimum resistance to flow in this direction, therefore will have relatively high permeability. Also, results showed the faults number 15, 6, 10 and 2 will be the most dangerous faults during CO2 injection.
 
 
Mehdi Talkhablou, Seyed Mahmoud Fatemi Aghda, Habibulah Heidari Renani,
Volume 16, Issue 2 (Summer 2022 2022)
Abstract

The stabilization of underground spaces is one of the most challenging topics in engineering geology. There are several methods to determine the type of tunnel stabilization system, but most of these methods have several weaknesses. Therefore, the development of a method that comprehensively considers almost all parameters influencing tunnel stability and their interdependencies has not received sufficient attention. The aim of this research is to investigate the parameters influencing the stability of tunnels using the rock mechanics system method. In this paper, 6 tunnels with different geological characteristics were selected. The effective parameters on the primary stabilization of these tunnels were coded using the ESQ method. Subsequent analyses were performed using the RES rock engineering system method to estimate and evaluate the optimal tunnel stabilization system. The results showed that parameters such as weathering of the joint surface, backfill and joint spacing played a more effective role than other parameters. For comparison, the analyses were also carried out using the RMR rock mass ranking method. The comparison between the results of the RES and RMR methods showed that the results of the RES method are in better agreement with the actual tunnel conditions and the shotcrete thickness of the proposed stabilization system of the studied tunnels. Since there is no limit to the number of input parameters in this method and, on the other hand, the mutual influence of the parameters on each other is considered, the relationships obtained from the RES method in this research can be effectively used in engineering projects along with other methods.
 


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb