Showing 154 results for gh
Zahra Hoseinzadeh, Ebrahim Asghari-Kaljahi, Hadiseh Mansouri,
Volume 15, Issue 2 (9-2021)
Abstract
The soil of the Arvand free zone in the north of Khorramshahr is fine cohesive and cannot be used in earth works. On the other hand, suitable materials for this purpose (coarse-grained soils) are located at the farther distances which a considerable cost requires. In this regard, it is trying to improve the soil with lime and furnace steel slag. This study is focused on improvement of the fine-grained soil by adding various contents of lime and furnace steel slag. For this purpose, after sampling and performance of compaction tests, different amounts of slag (10, 20 and 30% by weight of dry soil) and lime (2, 4 and 6% by weight of dry soil) were added to the soil and after curing for 28 days, the effect of additives on the physical and mechanical properties of soil was investigated by using several tests such as Atterberg limits, compaction, uniaxial compressive strength (UCS) and CBR as soaked and unsoaked. Based on USCS classification the study soil is CL, its plasticity index is about 25% and sulphate ion content is more than 0.5%. Experimental results show that by adding slag and lime at different contents to soil, mechanical properties of soil improve dramatically, so plastic index of soil decreased and UCS and CBR has been increased. Also, the maximum dry unit weight of soil increases and the optimum moisture content decreases. The test results also indicate that the effect of lime on soil is higher than slag and the effect of slag for less than 35% is not considerable, however the test result of unsoaked CBR show that the bearing of soil increase in the more than slag content 20% is significant. According to the previous studies, due to the relatively high sulphate ion content in the soil, the use of lime alone is inappropriate and the slag can only physically improve soil conditions but also chemically prevent the formation of large volume minerals (like Ettringite) by the reaction of lime with soil sulphate ion.
./files/site1/files/152/%D8%AD%D8%B3%DB%8C%D9%86_%D8%B2%D8%A7%D8%AF%D9%87.pdf
Alireza Sadeghabadi, Ali Noorzad, Amiali Zad,
Volume 15, Issue 2 (9-2021)
Abstract
Expansive soils contain clay minerals such as compacted kaolin which are widespread in nature. Displacements of this type of soils are associated with matric suction and degree of saturation. To determine the in-situ characteristics, necessary measures may be required to deal with the possible failure related to this type of soil. Different constitutive models of unsaturated soils have been considered the subject of many recent researchers (Sheng et al. 2004; Wheeler et al. 2003; Nuth and Laloui 2008; Zhang and Lytton 2009 a, b 2012). However, those constitutive models are generally complicated that are not properly implemented in computer programs for practical applications. The Barcelona Basic Model (BBM) is one of the geomechanical constitutive models to capture the elastoplastic behavior of unsaturated soils.
./files/site1/files/152/%D8%B5%D8%A7%D8%AF%D9%82_%D8%A2%D8%A8%D8%A7%D8%AF%DB%8C.pdf
Saeed Nazari, Alireza Arab Amiri, Abolghasem Kamkar Rouhani, Sadegh Karimpouli,
Volume 15, Issue 2 (9-2021)
Abstract
Chahar-Gonbad region of Kerman province is geologically located in the southern part of central Iran zone, dominantly in Uromieh-Dokhtar volcanic belt. In this region, many high potential prospects, specially Cu-Au mineralization, have been detected during large scale exploration and reconnaissance phases. In this paper, remote sensing and field geophysics were used for alteration mapping on the surface and ore body delineation on the subsurface, respectively. To this end, we used an ASTER satellite image and different maps were generated by spectral technics such as false color composites and spectral ratios. Results showed argillic (and phillic) alteration in Bab-Zangoeie area is surrounded by propylitic alteration, which could be a promising evidence for Cu mineralization. Integrating these results with previous exploration studies led to selecting target area selection for ground study and field geophysics. We used both induced polarization (IP) and resistivity (RS) methods as two powerful geoelectrical methods by a pole-dipole array along four profiles. After preprocessing analysis, forward and inverse models were constructed in 2D section and 3D overlay model of joint IP/RS anomalies were constructed. Based on the obtained results, the deposit in depth where we proposed drilling targets. Further drilling operation have proved the mineralization in our proposed targets.
./files/site1/files/152/%D9%86%D8%B8%D8%B1%DB%8C.pdf
Nasrin Zare Junaghani, Hamid Mehrnehad, Mohammad Mehdi Khabiri, Sara Srfraz,
Volume 15, Issue 2 (9-2021)
Abstract
Existence of sodium elements in fine-grained of some soils causes dispersive phenomenon in them. Failure to accurately identify dispersive clays leads to damage because dispersive clay soil particles disperse under certain conditions and wash away quickly. This research assesses dispersive degree of outcropped soils in southeast of Yazd. Finally, the modification of soil dispersive potential was investigated by using nanocellulose. After performing a series of physical, chemical and mechanical tests, characterization/ specification of the studied soils were determined. Then dispersive degree was specified by conducting chemical, pin hole, crumb and double hydrometer tests. Finally, soil dispersivity stabilization was performed using sample preparation with 0.5, 1 and 1.5% nanocellulose. The results showed that the studied soils have moderate dispersive in borehole A and extreme to slightly dispersive in borehole B. Therefore, it can be concluded that the closer we get to the center of the plain, the greater the dispersibility. The results of the dispersibility stabilization soil tests indicate that the optimum moisture content and dry specific gravity increases and decreases. Uniaxial strength and CBR increases. Also, it shows that the increase in nanocellulose has a positive effect on the modified samples and improves the soil dispersibility in this area.
./files/site1/files/152/%D8%B2%D8%A7%D8%B1%D8%B9.pdf
Mehdi Derakhshandi, Mojtaba Honarmand, Amir Hossein Sadeghpour,
Volume 16, Issue 1 (5-2022)
Abstract
Earth dams are geotechnical structures constructed on various shapes of a valley. The Vanyar Dam is a rock-fill dam located on a narrow valley. Concerning the geometry of the canyon, three-dimensional modeling was utilized to analyze this dam. According to the numerical analysis, the maximum settlement is 88.14 cm, which corresponds to 48 m above the bedrock in cross-section C, that is, a little less than 1% of the dam height. Besides, the total vertical stresses recorded by the pressure cells are about 28% less than those obtained from the numerical analysis. It is assumed that the difference is caused by local arching due to lower compaction and consequently a low stiffness area around the pressure cells. In terms of pore water pressure, there is good agreement between the pore water pressure obtained from the numerical analysis and the piezometers, such that the results are restricted to less than 1%. In general, the difference between the numerical analysis results and those recorded by the instruments is acceptable. Furthermore, the dam shows a suitable level of performance at the end of construction.
Ali Kamali, Dr Mehdi Mokhberi, Dr Abbas Ghalandarzade,
Volume 16, Issue 2 (Summer 2022 2022)
Abstract
Marls are one of the problematic soils that undergo more erosion due to their deformability and sensitivity to humidity and weather conditions. The effects of these soils have been observed on subgrades of pavements, abutment of dams, foundation of high-rise structures, the interaction of soil-structure and etc. The strength and deformation of marls are more effective to moisture content. In addition, the dynamic parameters of theses soil are considerable as well as static geotechnical specifications. Soil dynamic parameters can be obtained from both laboratory experiments and field experiments. With the aim of understanding the dynamic behavior of marl soils, this study was carried out to evaluate the marls of northwest region of Shiraz City which is mixture of marls containing the expansive anhydride gypsum. For this purpose, the laboratory cyclic triaxial test and in situ downhole test has been performed. The results showed that for normal consolidated marls, with increasing the confined pressure from 400 to 600 kPa (increasing soil depth), the shear modulus increases from 50 to 200 kPa. In addition, the behavior of the damping ratio is relatively different for strains less than and greater than 1%, but in general, for strains higher than 1%, the damping ratio decreases from 0.21 to 0.18 with the increase confined pressure from 100 to 600 kPa.
Mehdi Talkhablou, Seyed Mahmoud Fatemi Aghda, Habibulah Heidari Renani,
Volume 16, Issue 2 (Summer 2022 2022)
Abstract
The stabilization of underground spaces is one of the most challenging topics in engineering geology. There are several methods to determine the type of tunnel stabilization system, but most of these methods have several weaknesses. Therefore, the development of a method that comprehensively considers almost all parameters influencing tunnel stability and their interdependencies has not received sufficient attention. The aim of this research is to investigate the parameters influencing the stability of tunnels using the rock mechanics system method. In this paper, 6 tunnels with different geological characteristics were selected. The effective parameters on the primary stabilization of these tunnels were coded using the ESQ method. Subsequent analyses were performed using the RES rock engineering system method to estimate and evaluate the optimal tunnel stabilization system. The results showed that parameters such as weathering of the joint surface, backfill and joint spacing played a more effective role than other parameters. For comparison, the analyses were also carried out using the RMR rock mass ranking method. The comparison between the results of the RES and RMR methods showed that the results of the RES method are in better agreement with the actual tunnel conditions and the shotcrete thickness of the proposed stabilization system of the studied tunnels. Since there is no limit to the number of input parameters in this method and, on the other hand, the mutual influence of the parameters on each other is considered, the relationships obtained from the RES method in this research can be effectively used in engineering projects along with other methods.
Mohadeseh Sadeghi, Naser Hafezi Moghads, Mohammad Ghafoori, Mehrdad Amiri, Ali Bashari,
Volume 16, Issue 2 (Summer 2022 2022)
Abstract
The design of underground or terrestrial structures on the rock bed depends on the physical and mechanical properties. Considering the mining method in Tabas coal mine extraction method is long and destructive, the evaluation of the geomechanical properties of the rocks is more necessary. In this research, the characteristics of the rock units of the eastern tunnel No. 3 of Tabas coal Pervadeh mine were investigated. In this study, 3 samples of shale, sandstone and mudstone were examined. Considering the importance of the subject in this research, new experimental relations have been proposed, and their application shows desirable results. In order to obtain geomechanical characteristics and empirical relationships, physical tests such as porosity, water absorption percentage, unit volume weight, and mechanical properties such as uniaxial compressive strength, point load index, Brazilian tensile strength, direct cutting test, durability and brittleness index were carried out. To achieve the desired objective, the most appropriate relationships are presented using the regression method. Statistical analysis shows good correlation between different parameters in shale, sandstone and mudstone samples.
Dr Nasrollah Eftekhari, Dr Sasan Motaghed, Dr Lotfallah Emadali, Dr Hasi Sayyadpour,
Volume 16, Issue 2 (Summer 2022 2022)
Abstract
In the variability of earthquake hazard analysis results, ground motion prediction equations play an important role. Selection of appropriate prediction relationships for the region can lead to stability and accuracy of earthquake hazard analysis results. In this study, different prediction relationships were investigated and analyzed for earthquake hazard analysis in Ahvaz city. These relationships were ranked based on the criteria of logarithmic probability, Euclidean distance and deviation information in different periods. Then the most efficient relationships were selected by data envelopment analysis (DEA) method on the basis of differences in the obtained results. Out of 67 possible relationships, 5 were identified as suitable relationships for earthquake hazard analysis in the Ahvaz urban area. Then, a special efficiency criterion was used to determine the weight of these relationships. The results of this study can help to reduce to a large extent the uncertainties involved in analyzing the seismic hazard of the area studied.
Kamal Ganjalipour, Seyyed Mahmoud Fatemi Aghda, Kamal Nabiollhi,
Volume 16, Issue 3 (Autumn 2022)
Abstract
Electromagnetic methods in applied geophysics are advancing rapidly. Since the TDR system has grown, its use has led to innovative applications and comparisons with other previous measurement methods. A TDR system consists of a radar (electromagnetic) receiver and generator, a transmission line, and a waveguide. The electromagnetic pulse generated from inside the conductor cable moves towards the waveguide and is tested through the waveguide into the environment under test. In the last few years, the use of the TDR system to identify water leakage situations has been expanding. In this article, by performing tests on two-strand telecommunication cables as TDR sensors, the ability and accuracy of the time domain reflectometry method in detecting leakage situations has been evaluated. In this research, the two-stranded cable was buried under GC gravel clay material, and by increasing the percentage of soil moisture stepwise at two points, the sensitivity of the TDR method to the changes in moisture around the cable was investigated. Based on the TDR waveforms, the points of reflection coefficient changes are located at the distances of 9.5-9 and 4.5 meters, which is completely consistent with the actual distance of the test points. In this research, TDR moisture meter made by soil moisture company model 6050x1 was used. The results of this research show that the TDR method has the ability to be used as a monitoring system to detect leakage in dams, dikes and other geotechnical structures.
Dr Mohammad Fathollahy, Mr. Habib Rahimi Menbar, Dr. Gholamreza Shoaei,
Volume 16, Issue 3 (Autumn 2022)
Abstract
Shear strength parameters are important for assessing the stability of structures, and are costly to calculate using conventional methods. In this research, simple geotechnical techniques and artificial intelligence were used to calculate the angle of internal friction and soil cohesion without the need for more complex testing. To this end, intact samples from 14 boreholes in Bandar Abbas, which had undergone primary geotechnical testing and direct cutting, were selected and used to train neural networks. 195 networks were trained in in this research. To achieve the best performance, feedforward neural networks were first trained in single and double layer modes with a low number of neurons in the middle layer, and the TRAIN BR function was selected due to the high ratio of R (0.97). Then, by incorporating additional layers, the Median model was trained using configurations of 3, 4, and 5 layers, each with varying numbers of neurons in the intermediate layer (50, 40, 30, 20, and 10). The results show that the four-layer MLP network gives the best results, for this mode R training 1, the test R is 0.90 and the total R is 0.98. Finally, to validate the neural network, 15 samples were selected and the input parameters of the network were trained in the optimal states of 2, 3, and 4 layers, then the output of the network was evaluated. For cohesion prediction, the neural network in 4-layer mode (R2=0.99) and 2, 3 and 4-layer networks (R2=0.99) have the best output for the friction angle.
Armin Aziminejad, Omid Makhdoom, Panan Zarfam, Abolreza Sarvghad Moghadam,
Volume 16, Issue 3 (Autumn 2022)
Abstract
In most current seismic codes, the stiffness and strength of seismic members are considered to be independent, so that a change in the strength of the members does not result in a change in the stiffness of the members. Recent studies show that these parameters are interdependent. Therefore, the way these parameters are calculated and the arrangement of centers of mass, stiffness and strength can be effective in determining the seismic response. In this research, buildings with different levels of normalized yield eccentricity (ed/A) were designed according to the ASCE/SEI 07-22 seismic code (Code Design models) and compared with the Balance-25% and Symmetric Strength models. The results of the nonlinear static analysis and incremental dynamic analysis showed that the average spectral acceleration at the level of collapse in the Balance-25% and Symmetric Strength models increased by approximately 18% compared to the Code Design model. Therefore, these models are safer than the Code Design model. In addition, the average of the peak rotation of floors and the maximum inter-story drift at the collapse level in the Balance-25% and Symmetric Strength models has decreased by 100% and 12% respectively compared to the Code Design model. Therefore, the Code Design model had the lowest and the Balance-25% and Symmetric Strength models had the highest dynamic seismic performance.
Ms Najmeh Mohammadi, Dr. Giti Forghani Tehrani, Dr. Afshin Qishlaqi,
Volume 16, Issue 4 (Winter 2022)
Abstract
Acid mine drainage (AMD) as the most important environmental issue in mining sites is considered a significant source of environmental pollution. AMD is typically produced by the oxidation of sulphide minerals, especially pyrite. The present study aims to investigate the acid production potential of the wastes of Mehmandoost coal washing plant located in NE Damghan. For this purpose, mineralogical, geochemical, and statistic tests were carried out on 7 representative coal washing waste samples. The obtained results show that although coal washing wastes are not enriched in Cu and Mn, they are moderately enriched in Ni and Co, significantly enriched in Cr, Sb and Zn, strongly enriched in Cd and As, and extremely enriched in Pb and Mo. The main mineral phases presented in the studied samples include quartz, muscovite, clinochlore, kaolinite, illite, montmorillonite, calcite and pyrite. In most of the studied samples, the pH and electrical conductivity (EC) of the saturated paste is <3 and > 2000 μm/cm, respectively. Moreover, in most samples the Net Neutralization Potential (NNP) is < -20. Also, in most of the samples, the Net Acid Production Potential (NAPP) is positive and the Neutralization Potential ratio (NPR) is < 3. The pH of Net Acid Formation (NAG pH) of these samples is < 4.5 and the ratio of Acid Neutralization Capacity to Maximum Acid Potential Acidity (ANC/MPA) is < 1. According to the results of static tests, there is a possibility of production of acidic drainage by the studied samples, therefore, taking suitable management measures to control acid production in the area is of crucial importance.
Dr. Davood Fereidooni, Dr. Sajeddin Mousavi, Dr. Esmaeil Najafi, Dr. Gholam Reza Khanlari,
Volume 16, Issue 4 (Winter 2022)
Abstract
Assessing and understanding the hydromorphological characteristics are necessary to understand the behavior of a river and its active processes. This is useful for understanding the erosion and sedimentation regime and changing the river path, for making correct engineering and human activities in the river's catchment area. The Gian River, with an average annual discharge of 2.3 m3/s, is one of the tributaries of the Gamasiab River in the Hamedan province. From a geological and hydrogeomorphological point of view, the Gian is a small river. It is fully compatible with the geological structures of the region. The calculation of the sinusoidal coefficient has shown that this river is a meandering river whose wavelength, the amplitude of the oscillation and the width of the meander belt are smaller in the mountainous area than in the plain area The gradient of the river bed is relatively low and it is classified as an erosion and sedimentation river in its different sections. The Gian River has a rocky bed in the mountainous part and an alluvial bed in the plain. The Gian River has a small catchment area, and, according to theGravelius' coefficient, its shape is almost elongated. The catchment elevation of the Gian River is between 1455 and 2700 with a weighted average of 1715.20 m.a.s.l. and its area decreases with the increase in the elevation. The concentration time of the catchment is 4.204 hours. The application of the data and results of the research can be very effective in land use planning, engineering and executive applications to predict river changes and protect engineering structures such as roads, bridges, coastal structures and railways, protect agricultural lands in the region and develop tourism.
Aylar Hosniyeh, Dr Rouzbeh Dabiri, Alireza Alizadeh Majdi, Elnaz Sabbagh,
Volume 16, Issue 4 (Winter 2022)
Abstract
Silty soils containing sodium content, known as salty silty soils, are classified as another type of problematic soil. When this type of soil comes into contact with water, it can swell and diverge, leading to settlement and deformation. Considering that a significant part of the Urmia Lake basin and the Tabriz plain consists of sodium-rich fine soils, the aim of the project is to improve the quality of the soils. Therefore, one of the main objectives of this study is to assess the sediments within the lake bed in order to reduce erosion and to evaluate the possibility of improving and stabilizing the sodium saline silty soils in the area using the geopolymerization technique. To achieve this, pumice material with pozzolanic properties was separately mixed with the soil under investigation at weight percentages of 3%, 5% and 7%, together with a calcium hydroxide solution as a catalyst at concentrations of 2%, 5% and 7%. The samples were then cured for one day. Laboratory tests, including compaction, uniaxial compressive strength, direct shear, and consolidation, were carried out to evaluate the geotechnical behavior of the improved soil. The results obtained indicate that the combination of 3% pumice with 2% calcium hydroxide increased the uniaxial compressive strength of the stabilized sample by 1.32 times after one day of curing. In addition, the mixture of 7% pumice with 2% calcium hydroxide significantly improved the internal friction angle by 20 times. Finally, the combination of 7% pumice with 2% calcium hydroxide reduced the value of free swelling potential by up to 86%.
Dr Seyed Yahya Mirzaee, Phd Student Zahra Chaghazardi, Dr Manouchehr Chitsazan, Dr Farshad Alijani,
Volume 17, Issue 1 (Spring 2023 2023)
Abstract
The Evan plain is located in the Khuzestan province in the southwest of Andimshek city. Groundwater is one of the available water resources for irrigation, drinking, and industry in this region. Due to the importance of examining the ground water quality of the Evan plain, hydrochemical parameters and nitrate pollution have been evaluated. Nitrate is one of the most widespread pollutants of ground water in the world. However, few studies have been conducted on this pollutant in the Evan plain. Therefore, to assess the quality of ground water in this area with emphasis on nitrate pollution, sampling was carried out in September of the water year (1400-1401) from 22 wells in this plain. During the sampling, field parameters (temperature, pH, EC), concentrations of major elements (Ca2+, Mg2+, Na+, K+, Cl-, SO42-, HCO32-, CO32-), and nitrate were measured. The results of the factor analysis demonstrated three influencing factors, namely EC, Na+, K+, Mg2+, Ca2+, Cl-, SO42- (as the first factor), pH and Hco32- (as the second factor), and NO3- (as the third factor), with a total of 89.72% having the most changes in the Evan plain aquifer. The dominant water type in the Evan plain is sulfate-calcite. Hierarchical clustering analysis shows the three clusters for the regionalization of nitrate data. In general, the changes in nitrate ion concentration in the groundwater of the Evan plain are affected by the size of the soil particles, the depth of the groundwater, and the utilization of chemical fertilizers in the area.
Dr Asghar Milan, Mehran Shafiei,
Volume 17, Issue 2 (Summer 2023)
Abstract
Calculating the volume of earthworks in mines is one of the challenging, costly, and time-consuming issues in the field. In mining projects, it is necessary to calculate the volume of excavation to estimate the volume of extraction in order to plan the sale of the produced products and to calculate the cost performance of the contractors. The calculation of excavation volumes presents many challenges, such as the selection of the best measurement tool and technique, the need to adjust maps produced in different time periods, the existence of inflation coefficients and the volume to weight conversion factor. Today, tools such as laser scanners, total stations and metric cameras are used to calculate earthwork volumes. However, they are expensive to use and require an experienced operator. Therefore, there is a need to investigate methods to calculate volumes in less time with acceptable accuracy. This research evaluated the use of smartphones for optimal volume estimation of earthworks. In this research, the image data obtained from the smartphone was processed with a technique based on structure from motion (SFM) and the results were used to create a digital terrain model to estimate the volume of earthworks. The calculated volume differences for the earthworks volume compared to ground methods for a soil mass and the studied excavation are 3.86% and 1.84% respectively, which shows that the method used in this research has the necessary accuracy to calculate earthworks volumes and considering the many advantages it has over traditional methods in terms of cost and time, it can replace them.
Somayeh Zarei Doudeji, Rahim Bagheri, Hadi Jafari,
Volume 17, Issue 2 (Summer 2023)
Abstract
The science of system dynamics is a management tool capable of simulating complex systems in water resources. In this research, the model of the dynamic system of multi-purpose consecutive Kardeneh-Sana dams located in Bushehr province has been simulated. The purpose of this modeling is to realize the different needs of the dam (drinking, environment and industrial agriculture) before its construction and also to investigate the effect of construction of the upstream dam on the supply of the downstream dam. The results were studied after calculating the annual and monthly percentage of volume and time supply of the different needs and source of supply, as well as considering two drinking water wells to provide drinking water in the months when the dam is not able to provide drinking water and the maximum The discharge of the current drinking water pipeline of the region was carried out. Six management scenarios were considered for modeling, and finally the sixth scenario was considered as the most optimal scenario. In order to evaluate the model, the simulated values were compared with the observed values of the water volume of Sana Dam. The results indicate that the volume supply of drinking, environment and industrial agriculture needs of Kardeneh Dam is 97.66, 96.59 and 82.76 respectively, and also the volume supply of environment and agriculture needs from Sana Dam is 100, 48 respectively. It is 83.0%, which is within the acceptable range of the Ministry of Energy. Based on this research, it was determined that by modeling based on model evaluation indicators including percentage of volume supply and percentage of time supply of different needs, it is easy to determine the effect of management and exploitation policies on the way of determining and allocating resources. Water observed and made the most optimal decision.
Professor Hamidreza Nassery, Koosha Tamimi, Dr Farshad Alijani, Dr Sadegh Tarigh Azali,
Volume 17, Issue 3 (Autumn 2023)
Abstract
The development of underground transportation activities in cities, such as tunnel boring, may exert short-term or long-term effects on the groundwater and springs of such areas. The construction of the tunnel of Tehran Metro Line 6 (TML6) through alluvium and carbonate rocks of Ali Spring has aroused concern due to the caused fluctuations in discharge and temporary dryness of the spring. The hydrochemical properties of the groundwater and catchment area were investigated to find a connection between the aquifers around the spring and determine the major aquifer feeding it. The estimated volume of water penetrated to the tunnel and the most greatly affected area by the water leakage into the tunnel was determined using analytical methods of water leakage into the tunnel and the DHI method. The statistics for precipitation with the changes in the discharge of the spring before and after the excavation of the metro tunnel were compared to evaluate the changes in the discharge of the spring with the precipitation in the area. The results showed that the metro tunnel excavation has dramatically affected the hydrological system of the area and discharge of the Ali Spring. Moreover, continuing the extraction may produce adverse effects on the discharge of other springs and wells and alter the flow system of the area temporarily or forever.
Amin Ahmadi, Gholamreza Mirzavand, Maryam Zebarjad,
Volume 17, Issue 3 (Autumn 2023)
Abstract
The zone of influence of the well is the area where the activity of the well changes the water level. The zone of influence is important in determining the protection zones; however, in this regard, reliable relationships have not yet been presented and their lack of relationship has not been confirmed; and this is due to the lack of accurate knowledge of the zone of influence in some aquifers. This study was carried out using the MODFLOW model to know the effect of aquifer physical parameters on the drawdown cone in an unconfined alluvial aquifer with a sloping water surface; and since no such research has been reported so far, the results are innovative. The results showed that although it is possible to ignore the effect of a well in parts of the aquifer due to measurement and presentation limitations, in practice the influence zone of each well will extend to the outer physical boundaries. It was found that two types of real and theoretical drawdown cones can be discussed in the influence zone and each should be analyzed separately. It was found that parameters such as hydraulic conductivity, saturation thickness, transmissivity, horizontal anisotropy, bed slope, and amount of recharge in sloping unconfined aquifers have a dual effect on the drawdown cone, and if their high values decrease the drawdown in short distances, they increase the drawdown in long distances. It was found that normal heterogeneity does not change much on the drawdown cone, and the reason is the opposite effects of hydraulic conductivity and specific yield on the drawdown value. It was found that hydraulic conductivity, horizontal anisotropy and specific yield have a strong effect, but vertical anisotropy and heterogeneity have a negligible effect on the drawdown cone.