Search published articles


Showing 27 results for Type of Study:

Dr Ali M. Rajabi, Alireza Hossini, Alireza Heidari,
Volume 11, Issue 3 (1-2018)
Abstract

In many rock engineering projects, accurate identification of rock strength properties is very important. Uniaxial compressive strength is one of the most important features to describe the resistive behavior of rocks which is used as an important parameter in the design of structures especially underground openings. Determination of this parameter using direct methods, including uniaxial compressive strength tests is costly and time-consuming, and also sometimes preparation of standard samples in many rocks is difficult. In such cases, the implementation of some simple and non-destructive tests and using empirical relations can increase the evaluation speed and reduce costs. These relations even regional or local (For example within a geological formation or a single lithology) can help in the estimation of these parameters in order to be used in geotechnical projects. In this study, samples of existing limestones in south west of Tehran (Capital of Iran) were prepared and uniaxial compressive strength, point load, Schmidt hammer and Shear wave velocity tests on which have been performed. Then by the statistical evaluations of the results, the empirical relations between uniaxial compressive strength and the results of other tests are obtained. The comparison between the predicted and observed values of uniaxial compressive strength represents the validity of obtained empirical relations. The application of the proposed relations for limestones in the study area and those with similar geological conditions will provide acceptable results.
Ali Massumi, Maryam Rahmati Selkisari,
Volume 11, Issue 3 (1-2018)
Abstract

In recent decades many researchers have studied on the damage assessment of structures after a seismic event. To assess the damage of structures under an earthquake, it is so important to study the correlations between earthquake parameters and damages of the structures. A lot of seismic parameters have been defined by researchers to characterize an earthquake. Spectral parameters of an earthquake convey a variety of information about ground motion, so they can properly characterize an earthquake. Also a lot of damage indices were proposed by researchers to quantify the damage of the structures or to rank their vulnerability relative to each other. Park-Ang index is one of the best indices to describe the damage of a structure. In this paper, the correlations between spectral parameters of earthquakes and Park-Ang indices are studied. Three RC frames with different height are analyzed under far-fault earthquake records by nonlinear dynamic analyses. The correlations between spectral parameters and Park-Ang indices of the frames are calculated. The results show that in all the frames most of spectral parameters have strong correlations with damage intensity. In order to estimate the damage potential of an earthquake, some spectral parameters which have high correlations with damage intensity can be proper indices. Housner intensity, acceleration spectrum intensity and velocity spectrum intensity are shown to have strong correlations with damage intensity. In this paper, a new spectral parameter which has high correlation with damage intensity is achieved. 
Kobra Jafari, Naser Moghaddas, Alireza Mazloumi Bajestani, Azam Ghazi,
Volume 11, Issue 3 (1-2018)
Abstract


Mohammad Hosein Ghobadi, Paria Behzadtabar,
Volume 11, Issue 3 (1-2018)
Abstract

Rock anisotropy plays an important role in engineering behavior of rocks. Slates are anisotropic rocks which have long been used for gable roof, floor tiles, borrow materials, and other purposes. The slates studied in this research are calcareous and have a porphyro-lepidoblastic texture. To determine the role of the anisotropy on the tensile strength and fracture pattern, two variables including ψ (the core axis angle to foliation) and β (the angle between the axis of loading and foliation) in the Brazilian tests were used. The angles were selected at 15° intervals. Thus, for both ψ and β, seven angles of 0˚, 15˚, 30˚, 45˚, 60˚, 75˚, and 90˚ were selected (i.e., there are 43 possible modes). In order to name and examine the failure pattern, 11 models were proposed. The average value of the failure strength for the three stations varies from 3.21 MPa to 20.94 MPa. Based on the obtained results, there is a direct relation between the average tensile strength and density. A comparison between Brazilian test data under dry and saturation conditions shows that the saturated Brazilian tensile strength is 30.8% less than the dry Brazilian tensile strength. Moreover, the changes in fracture length with the changes in ψ and β indicate an inverse relation. Eventually, the average of tensile strength (σt) and strength anisotropy index (Ia) demonstrates that the influence of orientation angle (ψ) is much larger than that of foliation-loading angle (β).
 
Fariborz Dehghani, Hadi Shahir, Ali Ghanbari,
Volume 11, Issue 3 (1-2018)
Abstract

In the narrow geosynthetic-reinforced retaining walls a stable rear wall exists in a short distance and so there is no enough space to extend appropriate length of reinforcements. In this case, the probability of overturning of retaining wall increases especially when subjected to earthquake loading. To increase the stability of the wall, reinforcements may be connected to the stable rear surface. Alternative solution is the utilization of full-height cast in-place concrete facing in order to resist the earth pressure by combined actions of reinforcements pullout capacity and facing flexural rigidity. One of the main questions about this type of walls is the portion of earth pressure resisted by the facing. In this study, the seismic earth pressure of narrow geosynthetic-reinforced backfill on rigid facing was evaluated using limit equilibrium approach and horizontal slices method. The critical failure surface was assumed to extend linearly from the wall toe to the rear surface and then moves along the interface of the backfill and rear surface up to the backfill surface. The effects of various parameters such as wall aspect ratio have been investigated. The obtained results show that the applied soil pressure on wall facing will be increased with depth in the upper part of the wall according to the Mononobe-Okabe equation, but its pattern is inversed in the lower part of the wall and it decreases until it reaches to zero at the wall toe. The results of analyses indicate that the attracted soil thrust by the facing increases with lessening of backfill width.
Behrouz Ahmadpour, Masoud Amel Sakhi,
Volume 11, Issue 3 (1-2018)
Abstract

Earth-fill dams stability in steady state seepage condition is very important, especially during earthquakes. Numerical software analyses require accurate and realistic modeling of construction stages. Since earth-fill dams are constructed in different layers, so these conditions should be considered in software modeling to achieve a reasonable design. In this study, an earth-fill dam is modeled in PLAXIS software and the effects of the number and shape of layers are studied in dry and steady-state conditions. Obtained results in static and pseudo-static analyses show that modeling of earth-fill dams with different layers has significant effects on shear stresses and horizontal displacements. For example, horizontal displacements and shear stresses, increase at least 50% and 17% respectively, in comparison with single layer models. According to the obtained results, it can be mentioned that modeling of an earth-fill dam in the layered model and rather in inclined layers are more reasonable
K Saberchenari, H Salmani, Ms Mirabedini,
Volume 11, Issue 4 (5-2018)
Abstract

Introduction
Landslides are natural events that one or more factors can effect in its occurrence that each of them plays a special role in this field. The hazard assessments of this phenomenon are a complicated problem due to the interference of the effective factors in its occurrence. The uncertainty that is due to ambiguous conditions of geology characteristics, hydrology, tectonics, land cover, rain, erosion, temperature fluctuations in the slope instability demonstrate the benefit of accurate methods in the study of slope instability. Since the prediction of the landslide occurrence is out of the power of current knowledge, identifying sensitive areas to landslide and ranking it can protect us from landslide dangers. According to preliminary estimates, annually 140 million dollar financial damages inflict by landslides over the country, while the loss of unrecoverable natural resources is not counted. In general, the ultimate goal of studying landslides can be found the ways that to reduce damages caused by them. Therefore, it is necessary to prepare the landslide hazard map.
The main goal of this research is landslide hazard zonation of Ziarat watershed using Dempster-Shafer. For this purpose, 13 modeling approach (using all factors and eliminating of individual factors) to prepare the hazard maps have used. Ultimately, the accuracy of the model has been evaluated using receiver operating characteristic (ROC) curves. The study area is one of the most prone areas to the landslide in the Golestan region. Sensitive lithology units, high diversity of topography and land-use changes have increased landslide susceptibility in this area. Therefore, investigation of effective factors in landslide occurrence and providing zonation maps to take management action in this area is necessary.
Material and methods
The study area is located in northern Iran, Golestan province. The Ziyarat watershed with an area of about 7800 hectares lies between longitudes 54º 10ʹ 13ʺE and 54º 23ʹ 55ʺE, and latitudes of 36º 36ʹ 58ʺN and 36º 46ʹ 11ʺN. At first, extensive field observations of the study area and aerial photos in 1:25000 scales have been used. So, a total of 50 sliding points are recognized and inventory map is produced (dependent variables). Then, 70% of total points (35 points) have considered for hazard zonation maps and 30% (15 points) for model validation.
In this research, twelve factors affecting (independent variables) landslide occurrence to provide hazard maps were applied. These factors include land-use, soil texture, geology, rainfall, slope, aspect, altitude, distance from faults, roads and rivers, stream power index (SPI) and plan curvature (CP). These factors can be divided into three broad categories which are topographical, geological and environmental conditioning parameters. The maps of these 12 factors have been produced using basis maps (DEM and Geology maps) in GIS software. The amount of Landslide density in each factor class have calculated from a combination of independent and dependent variables, and rating of classes have done based on Dempster-Shafer equations. Finally, the Landslide hazard zoning map has drawn from the summation of weighting maps in Arc GIS with 13 approaches. In this map, Value of each pixel is calculated by summing weight of all factors in that pixel. The pixel values are categorized based on natural breaks classifier into very low, low, medium, high and very high hazard zones. Then, an accuracy of zoning map has been evaluated by ROC.
Results and discussion
The result of effecting factors on landslide classification shows that Mobarak formation, forest and agriculture land use, areas with low distance from road and rivers, low altitudes, rainfall buffer of 550-650 mm, northwest aspect, clay-loam soil texture, areas with high stream power index, high slope amplitude and area with fault density lower than 2 km/km2 contain the most susceptibility to landslide. The result of model validation using ROC demonstrates that with eliminating lithology factor Dempster-Shafer model with 92.9% accuracy is located in the great class. Also, the model accuracy shows that with eliminating rain and altitude factors the model accuracy is decreased to 73.8% and 80.4%, respectively. So, these two factors were identified as the most effective factors in the occurrence of the landslide in the studied area. Based on the landslide zoning hazard map of the Ziarat watershed and landslide points (15 points) that are considered for model validation the 20, 40, 26.67, 13.33 and zero percent of landslides is situated in the very high, high, moderate, low and very low hazard classes.
Conclusion
In this research, susceptible areas to landslide in the Ziarat watershed have been mapped with the Dempster-Shafer model. For this purpose, 13 modeling approach to prepare the hazard maps have been used. The following conclusions are obtained from this study.
- The rain and altitude factors were identified as the most effective factors in the occurrence of landslide in the Ziarat watershed.
- Based on the landslide zoning hazard map of the Ziarat watershed 60 percent of landslides is situated in the very high to high hazard classes.
- The produced landslide hazard map is useful for planners and engineers to reorganize the areas which are susceptible for landslide hazard, and offer appropriate methods for hazard reduction and management. ./files/site1/files/0Extended_Abstract4.pdf 
Mojtaba Bahaaddini,
Volume 11, Issue 4 (5-2018)
Abstract

Introduction
Determination of the mechanical properties of rock materials has been remained as a challenge for engineering geologists. In-situ tests are rarely used to determine the mechanical properties of rocks due to difficulties in sample preparation, performing and interpretation of the results, high costs as well as the required long time for doing the experiments. The common approach to determine the mechanical properties of rock materials is through conducting laboratory experiments and estimation the in-situ properties based on these laboratory results. This approximation, which is called scale effect, has been remained as a challenge for engineering geologists and practical rock engineers for decades. ...../files/site1/files/0Extended_Abstract1.pdf
, Abbas Akrami, Ebrahim Jafari,
Volume 12, Issue 3 (12-2018)
Abstract

Introduction
Hydraulic fracturing is used in the oil industry in order to increase the index of production and processing in wells whose efficiency has been dropped due to long-term harvest or the rocks around the well are low permeable. Since the hydraulic fracturing operation is costly, it is of special importance to determine the pressure required for hydraulic fracturing and the suitable pump for this operation to the project managers.
The hydraulic fracturing technique refers to the process of initiation and extension of fractures in rocks caused by the hydraulic pressure applied by a fluid. This technique was developed by Clark (19). Haimson and Fairhorst (20) continued the research on the initiation and extension of fracture. Hubbert and Willis conducted comprehensive studies on the mechanics of hydraulic fracturing to determine the direction and condition of principal stresses using the hydraulic fracturing process. Since then, numerous studies and modellings have been conducted to investigate the factors effecting the hydraulic fracturing.
The present research is important because experimental and numerical modeling were used to calculate the hydraulic fracturing pressure for different conditions and to select the suitable pump for the operation.
These simulations are aimed to investigate the fracture pressure in Loshan sandstone to determine a relationship between the pressure needed for fracturing and the confining pressure.
Material and methods
The specimen examined in this study is the Loshan sandstone. Sandstone is a sedimentary rock which is formed in all geological periods and is mainly consisted of fine sand particles, different minerals and has various colors. This rock is mainly formed in the shallow seas, deltas, along the coasts, and in hot deserts. Moreover, materials such as clay and silicon oxide contributed to the cementation of its particles.
The rock sample of Loshan sandstone is a calcareous sandstone with a limestone-silica structure whose cement is calcareous (Figure 1). The main and secondary minerals in this rock include calcite, feldspar alkaline, quartz, and opaque minerals. The diagenesis of this rock includes sericitization, chertization, and calcification. The main shapers of this rock are shaped and semi-shaped quartzes with calcite.
The physical and mechanical properties of the specimens are presented in Table 1.
Table 1. Physical and mechanical properties of the Loshan sandstone
Effective Porosity (%) Dry unit weight (KN/m3 ) Tensile strength (MPa) Poisson’s ratio Uniaxial compressive strength (MPa) Elastic modulus (GPa)
7.5 21.60 6 0.21 54.62 12..22
 
 
Figure 1. Loshan sandstone
Results and discussion
Fracture pressures in the developed models are listed in table 2. The Fracture pressures obtained from numerical modeling had a 10% difference with the experimental modeling results.
Table 2. Experimental ant numerical modeling results
Fracture pressures obtained from experimental modeling Fracture pressures obtained from numerical modeling Confining pressure (MPa) Axial stress
(MPa)
Model number
14.58 13.8 2 2.26 1
15.7 15 2.5 2.5 2
11.16 9.9 0 5 3
11.39 9.9 0 7 4
Figure 2 shows the relationship between the pressure required to initiate hydraulic fracturing and confining pressure for Loshan sandstone. There was a linear relationship between fracture pressure and confining pressure. Thus, with an increase of the confining pressure, the pressure required to initiate hydraulic fracturing increased. The relationship between the fracture pressure and the confining pressure for Loshan sandstone is in the form of Equation (1).
Pf = 1.7386 σ3+ 11.242                                   (1)
 
 
Figure 2. Relationship between fracture pressure and confining pressure
Conclusion
The following conclusions were drawn from this research.
1. The increase of lateral stress led to an increase in the fracture pressure.  
2. Changes in the axial stress did not significantly change the fracture pressure.
3. The results of numerical modellings were well consistent with those of the experimental modellings.
4. Unlike other studies conducted in this field, the numerical modellings in this study were performed without any initial pre-determinations for the crack-less models. Results show that in most cases, cracks initiate from the center and are extended toward both ends of the sample. The crack extension direction was parallel to the borehole axis inside the sample and perpendicular to the lateral stress. This is fully consistent with the observations in the experimental models.
./files/site1/files/123/4Extended_Abstract.pdf
Ali M. Rajabi, Hossein Khosravi,
Volume 12, Issue 4 (12-2018)
Abstract

Introduction
In general, landslides, in particular, earthquake-induced landslides, are among the phenomena that have caused great damages in recent years in Iran and the world. Although many studies have been done on the identification and description of landslides in general, the study of landslides caused by the earthquake, especially in Iran, is at the beginning stages. In a few studies, some landslides and some of their characteristics have been introduced. A magnitude 7.7 earthquake occurred in the Guilan Province was occurred on May 31, 1990. This earthquake is one of the most important earthquakes in Iran history due to its magnitude and occurrence of landslides. In various studies, the most important landslides have been listed. The development of quantitative and qualitative studies on earthquakes that have caused many landslides (such as the Manjil, Avaj, Firoozabad, Kojur, Sarein and Ahar and Varzaghan earthquakes) increase our understanding of natural disasters and, consequently, the management of the dangers resulting from them. The purpose of this research is to identify the factors affecting the occurrence of landslides caused by earthquakes, to determine the impact of each on the occurrence of this phenomenon, and also to prepare a map of earthquake hazard zonation hazard by utilizing the methods used in this research. In this study, hierarchical analysis method has been used to prioritize the factors affecting the occurrence of landslide and also the zoning of earthquake landslide hazard in the study area.
Research Methodology
The study area is located between 49˚ 30 and 4945˚ and latitudes 36º 0045" and 36º 30 52" with a surface area of ​​309.30 km2. In this research, in order to zoning the earthquake-induced landslides hazard, in addition to providing a map of landslides, seven factors influencing the occurrence of this phenomenon were identified and examined. These factors included elevation, slope, arias intensity, friction angle, adhesion, curvature of the slope and aspect. In this research, Analytic Hierarchy Process (AHP) method, one of the multi-criteria decision making models, was used with two approaches to using expert knowledge and data and expert knowledge together to prioritize the factors influencing the occurrence of landslide. Finally, two landslide hazard zonation maps were prepared. In a hierarchical analysis method related to the expert judgment, it was used to determine the priority of different criteria and sub-criteria and convert them into small amounts of oral judgments (expert opinion) based on the pair comparison, in which the decision maker preferred the factor in relation to other factors using the relevant tables, these judgments are converted into small amounts. In the method of using data and expert judgment simultaneously, first, in order to determine the priority of criteria from oral judgments (collection of expert opinions), we used to determine the importance or weight (Wi) of each sub-criterion (R) is also used to link the landslide area to each class and landslide area in the region.
Results
The results obtained from the paired comparison of the effective factors in the occurrence of landslide show that the relative preference of the factors include the factor of arias intensity, friction angle, slope, adhesion, aspect, height and curvature of the amplitude. The greatest influence on the sub-criteria for the sub-criteria is 10-11.54, which is related to the arias factor and also the lowest effect for the sub-standard of the domain curvature factor. Also, according to the zoning maps, in the first model, 73% and in the second model, 57% of the surface area are very high and very high risk areas, which indicates the high sensitivity of the study area to the earthquake-induced earthquake phenomenon.
According to the results obtained from the verification and evaluation of the models and comparison of the mapped data with the hierarchical analysis method (using expert knowledge and data) and a method that uses only expert knowledge, the map is derived from a method where bundles of knowledge and data are used simultaneously, in order to weigh the parameters, it is more in line with the map of the landing list of the region.
Conclusion
According to the results obtained from the review and evaluation of the two models in a method in which knowledge and data were used together, the QS value was 0.40 and the accuracy of the method (P) was 0.016. However, in a method in which only the expert judgment used to weigh the criteria and sub-criteria, the sum of the quality and accuracy of the method were calculated to be 0.37 and 0.006, respectively. Hierarchical analysis method, in which the benchmarks and sub-criteria of benchmark knowledge and data are used together, have a better performance than the other model, and the results are closer to reality. In addition, it also works better in distinguishing between high and high risk areas../files/site1/files/124/5rajabi%DA%86%DA%A9%DB%8C%D8%AF%D9%87.pdf
Hadi Fattahi, Zohreh Bayatzadehfard,
Volume 12, Issue 5 (12-2018)
Abstract

Maximum surface settlement (MSS) is an important parameter for the design and operation of earth pressure balance (EPB) shields that should determine before operate tunneling. Artificial intelligence (AI) methods are accepted as a technology that offers an alternative way to tackle highly complex problems that can’t be modeled in mathematics. They can learn from examples and they are able to handle incomplete data and noisy. The adaptive network–based fuzzy inference system (ANFIS) and hybrid artificial neural network (ANN) with biogeography-based optimization algorithm (ANN-BBO) are kinds of AI systems that were used in this study to build a prediction model for the MSS caused by EPB shield tunneling. Two ANFIS models were implemented, ANFIS-subtractive clustering method (ANFIS-SCM) and ANFIS-fuzzy c–means clustering method (ANFIS-FCM). The estimation abilities offered using three models were presented by using field data of achieved from Bangkok Subway Project in Thailand. In these models, depth, distance from shaft, ground water level from tunnel invert, average face pressure, average penetrate rate, pitching angle, tail void grouting pressure and percent tail void grout filling were utilized as the input parameters, while the MSS was the output parameter. To compare the performance of models for MSS prediction, the coefficient of correlation (R2) and mean square error (MSE) of the models were calculated, indicating the good performance of the ANFIS-SCM model.


Mehrdad Emami Tabrizi, Bahareh Mohammad Seyyedi,
Volume 13, Issue 1 (8-2019)
Abstract

Introduction
Microbial induced calcite precipitation (MICP) is one of the environment-friendly soil improvement methods that uses urease activity of the microorganisms to bound soil grains.
This method is based on three following steps:
1. Urea hydrolysis by urease activity of microorganisms and formation of ammonium and carbonate ions:
(2)
2. The reaction between carbonate and calcium ions and formation of calcium carbonate:
(2)
3. Bonding the soil particles by calcium carbonate.
One of the main challenges in use of MICP for soil improvement is the selection of proper injection method. An efficient injection method should lead to the construction of a homogeneous specimen beside of less used materials. In this study, a new method based on the theory of convection of liquids, for injection of bacteria and cementation solution is introduced.
Specimens are made according to the new injection method and their strength and homogeneities are tested. The obtained results are compared with the specimens which are made based on common injection method. Eventually, the success of the proposed injection method is investigated.
 
Material and methods
Gram-positive microorganism Sporosarcina Pasteurii No. 1645 (DSM 33) is provided from Persian type culture collection (PTCC). To make sand columns, Poly Vinyl Chloride (PVC) tubes were used with an internal diameter of 5cm and length of 12cm. Molds were placed vertically and a scouring pad and approximately 1 cm gravel as a filter are placed at the bottom of the column. Then the column packed with pure silica (Table 1). Finally, a scouring pad and approximately 1 cm gravel as a filter are placed at top of the column and mold were closed with a threaded Polypropylene layer on top and bottom with a hole for injection of bacteria and cementation solutions.
Table 1. Sand properties used in this study
Soil Type Gs γd e D10 D30 D60
Sw 2.6 1.84 41% 0.11 mm 0.43mm 0.85mm
In this study, a new multi-step method of injecting bacterial and cementation solutions is introduced. Injection of solutions is done after washing the sand column with distilled water. At the first step, 0.25 times of the void volume of soil, the bacterial solution is injected into the sand column. The bacteria allowed resting in the sand for 2 hours before the cementation solution was injected. After 2 hours, cementation solution is injected into the sand column by the amount of 0.25 times of pore volume of soil. The cementation solution consisted of 1.5 M urea and 3 M Calcium chloride. Again after 2 hours delay, bacterial solution and cementation solution are injected into sand column both by the amount of 0.25 times of pore volume of soil, same as aforementioned steps. In order to provide a comparison between the proposed injection methods of this study with conventional injection method, specimens are also made by the conventional method. In these specimens, bacterial solution and cementation solution are injected into the soil both by the amount of 1.5 times of pore volume of soil.
Results and discussion
To evaluate the homogeneity of the biologically improved sand specimens, the specimen is divided into 6 equal parts and the amount of calcium carbonate in each part is measured. It is found that calcium carbonate crystals are formed more homogenous in parts of specimens which are improved by new injection method (Figure 1). While specimens improved with conventional injection method are not homogeneous. The new injection method used in this study is based on the theory of convection in cementation and bacterial solution. Since the specific gravity of used cementation solution (3M urea and 1.5M calcium chloride solution) is 1.120 gr/cm3 and the specific gravity of ammonium chloride (which is the result of reaction between ammonium and chloride ions) is 1.031 gr/cm3, therefore a convection flow occurs in cementation solution after urease reaction (reaction 1) because of difference in specific gravity of two mentioned solutions. This convection flow causes a sustainable contact between cementation and bacterial solution in entire height of specimen.

Figure 1. Amount of calcium carbonate deposition along improved specimens by new and conventional injection method
To examine the efficiency of newly suggested injection method in this study, uniaxial compressive strength test (UCS) is performed on biologically improved sand specimens. Figure 2 shows stress-strain curves of specimens. The peak strength of specimens with conventional injection method is about 0.6 MPa. While the peak strength of biologically improved specimens prepared by new injection method is about 1.6 MPa. The reason for this difference in the obtained results is that when the volume of bacterial solution is more than the pore volume of soil, a part of bacteria solution in the first step of injection is removed. Then with an injection of cementation solution, more amounts of bacteria removes from the specimen before efficient placement of bacteria between soil particles. However, in new injection method the total volume of injection solutions (bacterial and cementation solutions) are equal to the pore volume of soil and this prevents the removal of bacteria from a porous medium.

Figure 2. Uniaxial stress-uniaxial strain curves of biologically improved specimens
Conclusion
In this study, the feasibility of using a new injection method for biological soil improvement is investigated based on the theory of convection with the aim to decrease the volume of bacteria and cementation solution. In this method, the final volume of bacterial and cementation solutions are reached the soil void volume in 4 consecutive injection steps. Specimens are made to investigate the efficiency of the proposed injection method. Also, specimens are made base on conventional injection method to provide the comparing possibility. Studying the precipitated calcium carbonate along the specimens show more homogeneity in ones prepared by proposed injection method in comparison to the specimens made by the conventional method. The obtained results of UCS tests are also showed that specimens made by new injection method have the more uniaxial strength (1.6 MPa) while the conventional method specimens are presented the strength of 0.6 MPa. Eventually, the proposed injection method of this paper implies less amount of bacterial and cementation solutions in a proper and efficient manner to bond the soil particles which leads to specimens with more strength, stiffness and homogeneity../files/site1/files/131/2Extended_Abstract.pdf
 
Saeed Mojeddifar, Nastaran Ostadmahdi Eragh,
Volume 13, Issue 2 (8-2019)
Abstract

Introduction
This work intends to apply ASTER images to discriminate hydrothermal alteration zones in Kerman Cenozoiic Magmatic Belt (KCMB). Band ratio, principal component analysis, Crosta and color composite images are important methods to analyze satellite images. Previous researches showed that these techniques are not able to discriminate hydrothermal alteration zones and they usually detect vegetation covering as alteration zones. The reason is found in the spectral signature of vegetation and alteration minerals. It means that they present the same interaction when face with electromagnetic energy in different wavelengths. Hydroxyl-bearing minerals are the important products of hydrothermal alteration. Clays, which contain Al-OH- and Mg-OH-bearing minerals and hydroxides in alteration zones, are distinguished by absorption bands in the 2.1–2.4 µm range of ASTER data. Solving these problems is difficult when using standard image-processing techniques such as band rationing, principal component analysis, or spectral angle mapper. In recent years, several attempts were made to extract altered regions in the areas covered with vegetation. To overcome this problem, this research uses ASTER data by applying support vector machine (SVM) algorithmn. SVM is a new technique for data classification in remote sensing application. This paper aims to investigate the potential of SVM algorithm in mapping of hydrothermally altered areas. In many applications, SVM has been shown to provide higher performance than traditional learning machines and has been introduced as powerful tools for solving classification problems. The adopted dataset contains three ASTER scenes using SWIR and VNIR bands, covering the Meiduk porphyry copper deposit, Kader, Abdar and Iju occurrences located in Kerman Province, southeast Iran.
Material and methods
This work has been prepared on three ASTER level 1B scenes. Two scenes were acquired on 18th April 2000 and another scenes on 15th June 2007. These scenes were georeferenced by using an orthorectified ETM +  image,  in  UTM projection and WGS-84 ellipsoid as a datum.  The first two data sets were corrected for Crosstalk. Atmospheric corrections were also performed by using Fast Line of Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH). The data sets were then mosaicked.­­ Internal Average Relative Reflectance (IARR) correction was also applied. In this part, the training and test samples of the ASTER data are presented. The adopted image is a multispectral satellite image that contains 2204 training pixels which 516 pixels are related to arjillic zone, 1278 pixels are related to phyllic zone and 500 pixels are pertinent to propylitic zone (Fig. 1).

Fig. 1. Training pixels for learning SVM algorithm; Red pixels: arjillic; Green pixels: phyllic; Blue pixels: propylitic
Results and discussion
ASTER bands 4, 6, 7 and 8 were applied for determination of phyllic and arjilic zones and 9 bands of ASTER for propylitic alteration. In order to evaluate the developed algorirhm, confusion matrix was used and validation showed that discrimination of phylic and arjilic is not possible but propylitic zone could be identified by SVM. Also, the present research introduced a new error function, so called blind error, which is calculated using confusion matrix. Based on blind error, SVM did not classify 73.6 percent of the alteration pixels. But the remained pixels were classified with accuracy of 66.06%. Honarmand et al. (2011) and Mojedifar et al. (2013) studied the field samples of the present study area. Their studies showed that sericitization is the most widespread form of hydrothermal alteration at the Iju, Serenu, Chahfiroozeh, Meiduk, Parkam, Kader and Abdar porphyry copper deposits. Two types of phyllic alteration could be found in the study area including ferric-iron-rich and iron-oxide poor phyllic alteration. ASTER images were also analyzed by band rationing and principal component analysis (PCA) in order to compare their results with the SVM classified image. A comparison of the field data with altered areas mapped by PCA reveals errors in the classified map. Vegetation cover and sedimentary rocks are enhanced, which are erroneously identified as areas of alteration. The band ratio approach yields similar errors to those produced by the PCA method. These problems are less evident in the classified image obtained by SVM. The qualitative assessment of the accuracy of these methods indicates that SVM algorithm could be a reliable technique for alteration mapping, provided that the nature of the training areas is well known.
Conclusion
A comparison of the results obtained from traditional classification methods and support vector machine algorithm was performed in order to map hydrothermal alteration. Since the known occurrence of mineralization in the study area is consistent with the mapped distribution of hydrothermal alteration using SVM, this method is suggested to apply in exploring for hydrothermal alteration in other parts of the Iranian Cenozoic magmatic belt../files/site1/files/132/6Extended_Abstracts.pdf
 
Ahmad Khorsandi Aghai,
Volume 13, Issue 3 (11-2019)
Abstract

In this research, the relationship and reaction between quantitative and qualitative Shahre Rye spring’s karstic water (Cheshme Ali) and spring’s adjacent alluvium aquifer have been considered to determine the relationship between alluvial and karstic aquifers and to study the connections between the two different groundwater environments. The results of the present research suggest geological conditions, hydrogeology and different hydraulic condition between Cheshme Ali karstic water with its surrounding alluvium’s aquifer. However the study results show the lack of a hydraulic connection between the two different groundwater environments (karst and alluvium) that are formed by north Rye fault.
Introduction
There have been many studies in the field of the present research, some of which are mentioned below.
(Tobarov, 1966). The N. Massei et al. (2002). (Robert E. 2005). (Ezatollah Raeisi 2008). (Cholami et al. 2008). (N. Goldscheider and C. Neukum 2010). (Dusan Polomcic et al. 2013).
The aim of this research is to identify the hydraulic relation between the alluvial aquifer and the karstic aquifer of the Cheshme Ali, during which the geographic, topographic and geologic situations and the changes in water discharge of Cheshme Ali and the changes in water table of the observation wells of the aquifer to the north of the spring have been reviewed simultaneously.
The results indicate a lack of relation between the alluvial aquifer and the karstic aquifer of the Cheshme Ali in Shahre Rye.
The general specification of the study area
The surface area of Shahre Rye equals to 2,293 km2 and the city is limited to the north by Tehran, to the south by Qom, to the east by Varamin and Pakdasht and to the west by Islamshahr, Robat Karim and Zarandieh (Fig. 1). The Cheshme Ali is located in the eastern parts of the city and southeast of Tehran. From a geographic point of view, the Cheshme Ali spring is situated in the southern part of the Cheshme Ali hill, and after leaving the ground, the spring's water flows to the south of Shahre Rye.
Methodology
1. Topography
The topographic specifications of the Cheshme Ali and its surrounding are as follows:
The highest points of the Cheshme Ali's surroundings are the Sepaye Hills with an altitude of 2,085 m above the sea, which are located to the east of Cheshme Ali. The height of Bibi Shahbanoo hill to the southeast of Cheshme Ali is about 1,498 m. The altitude of the northern hill of Cheshme Ali, where the spring is located is about 1,077 m and the lower sloped land surrounding it have an altitude of 1,072 m above the sea. This means that the opening of the Cheshme Ali spring is located at 1,072 m above the sea.
2. Geology
From the geological point of view, the existing units around Cheshme Ali of Shahre Rye consist of Precambrian, Mesozoic and Cenozoic sediments and rocks as geological specifications of Cheshme Ali and its surroundings are shown in Fig. 2.
From the structural geology, and geological specifications two geological sections AB, CD Were prepared and presented in Figure 3.
The Figure 3 shows, Cheshme Ali spring appears from Cretaceous thick layered limestone (Tizkooh formation Kt1) and the shahre Rye fault mechanism on either side of layering. However the water flow of cheshme Ali is nearly east – westerly after spring’s openings (A) and then spring water flow direction is to the south (Fig. 4).
The hydrogeology of the spring and the wells
1. The Cheshme Ali in Shahre Rye is a karstic spring, with few hydrogeological specifications that are concluded from the result of geological and hydrogeological review and analysis of the spring’s water quality.                                                           
Therefore, the karstic Cheshme Ali spring has a varied range of discharge which is from medium (25 to 100%) to high (>100%). Moreover in the curves of the spring’s discharge and simultaneous rainfall, shown in figure 5, the peak volume of water discharge of the spring corresponds fully with the peak rainfall, underlining the influence of simultaneous rainfall on the spring.                
The study of the hydrographic makeup of the spring (curve 2) shows the difference in the period between the upward curve (seven and a half months) and the downward curve (four and a half months) underlining the lower permeability of the spring’s intake area versus the grounds conducting spring water to the openings.
2. The hydrogeology of the surrounding wells:
For the purpose of studying the fluctuation of water tables of the observation wells around the spring and in its adjacent alluvial aquifer, the isobaths maps of groundwater level and groundwater table of the spring’s surrounding areas were drawn ( Fig.6). The level of groundwater table to the north of spring is 5.9 m and 6.6 m to the south of it, while the spring water is at ground level. In order to have a better understanding of the potentials of groundwater table in Shahre Rye’s Cheshme Ali and its surrounding environments from south to north, the potential profile is provided in figure 7 using the potential figures of witness wells and the Cheshme Ali spring. In the potential profile, the groundwater level of the Cheshme Ali is higher than the groundwater potential level of the witness wells, which seems to suggest the recharge of the plain by the spring.
The review of the groundwater quality in wells and the Cheshme Ali spring
The groundwater quality characters of the Cheshme Ali and the wells to the north and south of the spring are presented in table 2,that shows three differences and similarities in the results of the chemical analysis of water from Cheshme Ali and from wells located to the north and the south of the spring. The difference between the chemical composition of water from the spring and the chemical composition of the well located to the north is considerably more than the difference between the chemical compositions of the spring and the well located to the south.
Summary and conclusion
Based on the geological studies of this research, the Cheshme Ali spring in Shahre Rye appears from the Karstic Tizkooh formation (Fig. 2) and the geological structure shows a northerly direction for the slopes of the layers in Tizkooh formation, and an east-westerly direction for the appearance of the spring water (Fig. 3 and Fig. 9). The spring’s flow is disseminated and the spring is of Karstic - fault type (table 1). The discharge of Cheshme Ali corresponds entirely to rainfall and is influenced a lot by it (Fig. 5). The condition of groundwater table of the well and the spring (Fig. 6, A) and the water level potential of the spring and its surrounding wells underlines the existence of two different hydraulic environments (Fig. 6, B). Moreover, from the aspect of potential groundwater column, there is a large difference between the groundwater table potential of the spring and the potentials of the two wells to the north and south of the spring (Fig. 7and8). From a qualitative aspect, the quality of spring water differs greatly from the quality of water from the wells located to the north and south (table 2).
The results of this research are as follows:
1. The study of geologic, structural geology and the geological section shows the water in the Cheshme Ali of Shahre Rye is originating from the Karstic formation of Tizkooh that layers sloping are to the north, the spring water appears from the site of the Rye fault and then flows to the west.
2. The studies have proven that Cheshme Ali to be a Karstic – fault spring with disseminated flow, whose discharge is influenced by rainfall and condition of groundwater level and the table which underlines the alluvial aquifer shows lack of relation between two alluvial and karstic aquifers.
3. The water quality analyses show a great difference between the specifications of the spring water and its surrounding wells groundwater.
4- The north Rye fault mechanism are formed two different groundwater environment ( Karstic and alluvium) and however different groundwater conditions between north and south of alluvium.
Aref Alipour, Mojtaba Mokhtarian,
Volume 13, Issue 4 (12-2019)
Abstract

Introduction
The main objective of this contribution is to focus on the portion of the comminution process which deals with the prediction of the energy consumption due to the comminution portion of the milling processes.
The comminution energy in mineral processing and cement industry is usually determined by empirical Bond Work Index (BWI), regardless of the mechanical properties of a rock. The BWI is a measure of ore resistance against grinding and is determined by using the Bond grindability test. Determining the BWI value is quite complicated and time consuming. Its value constitutes ore characteristic and is used for industrial commination plants designing and optimization. The BWI is defined as the calculated specific energy (kW h/t) applied in reducing material of infinite particle size to 80% passing 100 µm. The higher the value for BWI, the more energy is required to grind a material in a ball mill. The energy consumed in the process of comminution depends on both the mechanism of comminution and the mechanical properties of the materials being ground. It is interesting to study the effect of the essential ones of these properties on the energy efficiency of grinding process.
Material and methods
Several attempts have been made to obtain and optimize the comminution energy. An efficient Response Surface Method, (RSM)-based method for the BWI approximate value determination, which is based on physico-mechanical tests, is presented in this paper.
BWI and some physico-mechanical tests on 8 typical rock samples and its correlation are studied; it would be beneficial to examine this relation based on physical concept. The database including Uniaxial Compressive Strength (UCS), Abrasion (AT), Hardness (HT) and Modulus of Elasticity (ME) are assembled by collecting data from Haffez experiments.
Results and discussion
The determination of the BWI from RSM- based multivariate model is almost matched with measured Bond’s work index. As a result of analysis the best equation obtained from RSM-based model is formulized in Equation 1:
                                      (1)
Standard statistical evaluation criteria are used to evaluate the performances of predictive models.
Conclusion
The performance of the estimator models can be controlled by R2, VAF, RMSE, MAPE, VARE and MEDAE. The RSM- based model with higher VAF as well as lower RMSE, MAPE, VARE, MEDAE shows better performance in comparison to the Haffez single-variable models. AT and ME have the greatest effect on the value of BWI; and also HT has the least impact../files/site1/files/134/6.pdf
Maryam Mokhtari, Kazem Barkhordari, Saeid Abbasi Karafshani,
Volume 13, Issue 5 (12-2019)
Abstract

In recent years, with the growing use of the nailing method for stabilizing excavation walls, there has been a need for a comprehensive investigation of the behavior of this method. In the  previous studies, the behavior of nailed walls has been investigated in static and dynamic states and under different conditions. However, due to the different feature of near-field ground motions, it is  necessary to study the effect of these motions on the behavior of the nailed walls. Near-fault ground motion is significantly affected by the earthquake record direction and the rupture mechanism. So, in this study, to compare the effects of near-field and far-field ground motions, a two-dimensional (2D) soil- nailed wall was considered. PLAXIS 2D was used for the modeling of the soil-nailed wall system. An excavation with a dimension of 10 meters in height was taken into the account. In this study, 10 records (Five fault-normal near-field ground motion records and five far-field ground motion records), were recorded  on the rock and  applied to the model. These ground motion records were derived from the near-fault ground motion record set used by Baker. These records were scaled to the Peak Ground Acceleration (PGA) of 0.35g and then applied to the bottom of the finite element models. Mohr-Coulomb model was then used to describe the soil behavior, and Elasto-plastic model was employed for the nails. A damping ratio of 0.05 was considered at the fundamental periods of the soil layer. The results showed that the  generated values of bending moment, shear force and axial force in nails under the effect of the near-fault ground motions were  more than those in the far-ault ground motions. These values were  almost equal to 23% for the maximum bending moment, 30% for the  shear force,  and 22% for the axial force. The created displacement under the effect of near-fault ground motions was  more than that in the far-fault since a higher energy was  applied to the model in the near-field ground motions during a short time (pulse-like ground motions). In contrast, in the far-fault ground motions, due to the more uniform distribution of energy during the record, such pulse-like displacements were not observed in the system response. Increasing in nail length and soil densification, decreases the displacement of the soil-nailed wall but does not change the general behavior of the soil under the effect of near-field ground motions. Based on the obtained results, for a constant PGA, there were  positive correlations between the values of the  maximum displacement on the top of the wall and  the PGV values of near-fault ground motion records. However, the mentioned correlations were  not observed in the case of far-fault ground motions.


Saeed Mahdavi, Mehrnosh Haghighat, Maryam Mokhtari,
Volume 14, Issue 1 (5-2020)
Abstract

Introduction
Rock mass deformation modulus is one of  the major parameters has to be considered in the design phase of arch dams. Due to filling and discharging of reservoir and corresponding loading and unloading on the dam abutments, irreversible deformation takes place within the rock mass and consequently, increases the potential of creating a separation between dam body and abutments. Therefore, the rock mass modulus must be more than an alowable value in order to prevent arch dam failure. Regarding small core samples and lack of joints and other similar discontinuities in samples, the determined modulus through performing laboratory tests is higher than those obtained through in-situ tests. The available technique to estimate the rock mass deformation modulus is divided into two classes as direct and indirect methods. In direct methods, the rock mass deformation modulus is measured via performing in-situ tests such as plate loading test while it is estimated through empirical equations using rock mass classification and laboratory test results in indirect methods. These equations are developed based on regression analysis between the rock mass modulus calculated via in-situ tests, the rock mass classification and laboratory test results. Although application of these equations is simple and cost-effective, the results are doubtful and cannot be used in the design phase of arch dam due to the heterogeneous nature of rock mass and rock type variability. The numbers of micro-cracks which are developed after gallery excavation using drilling and blasting technique are more close to the loading plate. Thus, calculated modulus in these points is lower than reality. The displacement in the points far from loading plate was near to zero while the transmitted load which is calculated applying ASTM D4394 standard is more than reality in small galleries. Consequently, the calculated modulus was extremely larger than real values and sometimes even more than intact value. The empirical equations are site dependent and they are just applicable in sites with similar geotechnical condition. It is obvious that in-situ tests, such as plate loading, are the appropriate method in order to determine the modulus of deformation, however, due to some simplification in the data processing such as semi-infinite boundary condition, the application of numerical simulation as a data processing tool is more appropriate. In this research, the Beheshtabad dam was introduced and the geology characteristics of dam site were investigated. Applying direct and indirect methods, the rock mass modulus of dam abutments is calculated.
Material and Methods
The dam site is placed approximately at a distance of 2.7 km from the intersection of Koohrange and Beheshtabad river. In accordance with geological studies, the rocks in the site could be categorized in four units combined of Dolomite, Dolomitic Limestone, Limestone, Marl and Marly Limestone. Applying empirical equation the rock mass modulus of dam abutments is evaluated based on the laboratory test results and rock mass engineering classification systems. In addition, ASTM D4394 is applied to investigate the results of ten plate loading tests which are executed in the right and left abutments. To interpret the plate loading test results in the right abutment, a three-dimensional Fast Lagrange Analysis of Continuum (FLAC3D) model is developed.
Result and Discussion
To process the numerical simulation results, back analysis as a data processing tool is used. In this approach, the input parameters of numerical model will be changed in the way that the measured quantities by extensometers at the monitoring points are almost equal with the computed ones via numerical model at the corresponding points. Based on the sensitivity analysis carried out on the Mohr-Coulomb failure criterion parameters, the friction coefficient and cohesion variation do not affect the displacements calculated via numerical simulation as the more portion of gallery displacements are elastic. The error function is minimum when the rock mass modulus is 12 GPa and the horizontal to vertical stress ratio (K0) is equal to 0.5. The evaluated rock mass modulus based on the numerical simulation is two times lower than corresponding one evaluated applying empirical equation as a result of empirical equation uncertainty. Consideration of stress decrement under loading plate shows lower level of stress decrement under loading plate in ASTM D4394 compared to numerical simulation. This is why, the rock mass modulus, calculated based on ASTM D4394, increases dramatically by getting distance from the loading plate. 
Conclusion
The empirical methods estimating the modulus of deformation based on rock mass classification systems tend to evaluate large value of modulus especially for the weak massive rocks.
As a result of galleries dimensions and semi-infinite boundary condition assumed in ASTM D4394, the calculated rock mass modulus increases dramatically by getting distance from loading plate. Therefore, the numerical simulation was applied to process the plate loading test results. A new normalized error function was developed based on measured displacements and the rock mass modulus in the right abutment was determined 12 GPa which is very lower than the calculated value using ASTM D 4394. Also, as a result of numerical simulation, the rock mass is uniform. The stress increment perpendicular to the loading plate was calculated applying numerical simulation which is 0-90 percent lower than those suggested by ASTM D 4394. 
 
Maziar Hosseini, Majid Taromi, Mahdi Saeidi, Vahid Soleimani, Mehdi Soltani Negar,
Volume 14, Issue 4 (12-2020)
Abstract

Introduction
Series A of coarse-grained alluvial deposits of Tehran are extended in eastern and north-eastern areas of Tehran. Analyzing and studying of these alluvial deposits from a geological point of view as well as their creation time and general characteristics such as the deposits’ mineral types, their source, and formation conditions, gives a better point of view to geotechnical engineers about exploring their characteristics as well as geotechnical aspects in underground structure design, excavations, and foundation design processes. On the other hand, in order to analyze stability, estimating the factor of safety and the seismic design of these structures, considering their location, which is in Tehran with a high seismic hazard area, the necessity of knowing the exact mechanical and dynamic properties of Tehran's alluvium is felt more than ever.
Material and methods
Due to the grain size of Tehran’s coarse-grained alluviums (series A) as well as high level of cementation of them, it is impossible (or maybe so difficult) to make undisturbed samples in order to do experiments. Such that it is excavated 23 boreholes with 30 to 140 meters depth as well as 17 test wells with 20 meters depth in an area which was extended in 10 kilometers in long which were located in Tehran’s No. 13 and No. 14 districts (as it can be seen in Figure 1). During the excavation of the entrance ramp and tunnel of eastern highway of Tehran, in-situ tests have been done in different sequences. Since it was important to investigate real behavior of these alluviums, different in-situ tests such as plate load test, in-situ shear test, pressuremeter test, and downhole test have been done as well as many laboratory and field tests. Furthermore, (1) X-Ray Diffraction (XRD) and (2) X-ray Fluorescence (XRF) as well as (3) Scanning Electron Microscopy (SEM) methods, have been used to explore the type of minerals and those used in cementation.
 
 
 
 

(ب)
 
 
 
Figure 1. a) Geological plan and the location of boreholes and test wells in the alignment of East Tehran Freeway
Results and discussion
Based on the results of XRD tests, it is quite clear that the largest weight percentages of tested samples are lime and silica.
Calcium and magnesium levels-as the high-power cations in flocculation process-in soil sample No. 1 (soil with high cementation level) are much more than soil sample No. 2 (soil with moderate cementation level).
This is the cause of high cementation level of soil sample No. 1 comparing with soils sample No. 2. A rapid increase in stress level can be seen in in-situ shear test results, in low shear displacements, up to reaching a maximum of τp (peak point) and afterwards reduction in shear stress with softening behavior.  
Cohesion and shear strength levels also increase by increasing the depth. According to the plate load tests results, an increase in soil modules changes can be seen in different depths by depth increasing.
Large tendencies to increase in volume and dilation can be seen in under shear load cemented soils, after applying a primary compression on them. A brittle behavior with the occurrence of a certain peak can be seen in cemented samples. The significant increase in strength is directly related to the severe dilation rate, which can be seen in cemented samples results.  The shear strength would be decreased, if this cement is broken during the particles’ displacements.
The results of downhole tests are shown in Figure 2. According to this figure, it has been explored that Vs,30 is about 600 m/s in moderate cemented soils while it is about 850 m/s in highly cemented soils.  Because of the homogeneity and uniformity of sedimentary deposits, shear wave velocity is increasing due to the higher density of the layers and high level of cementation in both of the soil types. However, this increase is not significant at depths above 25 meters.
Conclusion
Based on the results, cementation level of the eastern coarse-grain-alluvium of Tehran is moderate to high and minerals used in cementation of this type of soil are generally carbonated and especially calcite.
Investigating the level of cementation of soil as well as the results of chemical analysis and in-situ tests, it can be found that the strength and deformation parameters of the soil are directly related to the degree of its cementation.
Based on the obtained results, the deformation modulus increases by about 25%, the cohesion by about 55% and the shear wave velocity by about 30% with increasing the degree of cementation (Table 1).
Increases of these parameters are directly related to depth. However, the cementation level does not significantly affect the internal friction angle of the soil.
Table 1. Average results of in-situ shear tests
Deformation Modulus (MPa) Peak Friction Angle (deg.) Cohesion
(kPa)
USCS Depth
(m)
Sample
50-60 39 30-35 GW-GM 5 Moderately Cemented Soil
(M.C. Soil)
75-85 41 50-60 SP-SC 10
85-90 41 50-60 GW-GC 15
95-105 41 50-60 GW-GC 20
60-70 39 35-40 GW-GM 5 Highly Cemented Soil (H.C. Soil)
75-85 39 50-60 GW-GC 10
110-120 42 65-75 GW-GC 15
125-140 41 110-120 GC 20
 
 
Ramin Sarikhani, Amin Jamshidi, Artimes Ghasemi Dehnavi ,
Volume 14, Issue 5 (12-2020)
Abstract

Groundwater salinization in semiarid regions is a limiting factor of use with strategic importance. In this study, the sources of salinity, chemistry, and quality of groundwater in Robat (Khorramabad plain, Iran) were identified through the geochemical methods. Using data analysis, the concentration of cations and anions were recognized with the order of Ca2+>Na+ >Mg2+>K+ and HCO3-> Cl-> SO42+> NO3-> F-, respectively. The high concentration of Na+, Cl-, and EC in some places is attributed to the gypsum and salty formations. In the study area, the salinization processes are identified by natural and artificial activities. The salinization mechanisms are identified by the natural dissolution of gypsum and salt from Gachsaran formation and man-made sources including boreholes drilled through Gachsaran Formation, salt mining, and agricultural activity. Also, the high concentration of nitrate is related to agricultural fertilizers and karstification effects. It is seen that the atmospheric NO3-. HCO3-, Ca2+, and Mg2+ concentration exceeded the standard limit in a few samples probably due to the calcareous formation. Besides, hydrochemical facies of the groundwater are Ca- HCO3 and Na-K-HCO3. Due to the presence of calcareous and salt bearing formations, 46%, 26%, and 20% of all samples show a higher concentration of Ca2+, Na+, and Mg2+, respectively, which exceed the permissible limits. Sulfate and fluoride concentrations are less than the permissible limits. However, due to the presence of calcareous formation, salt bearing formation, and use of agricultural fertilizers, 100%, 26%, and 20% of all samples show a higher concentration of HCO3-, Cl-, and NO3- than the permissible limits.
Mohammad Darbor, Hadi Shakeri,
Volume 15, Issue 1 (5-2021)
Abstract

Introduction
Hydraulic fracturing is one of the most important stimulation methods for oil and gas reservoirs with low permeability. Various factors, such as in-situ stresses, joints and natural fractures of the formation, fluid rheology, mechanical properties of the formation, injection fluid flow rate and perforation operation, effect on the pressure and hydraulic fracture geometry. Many researchers have studied hydraulic fracturing behavior of rocks since decades ago. The researches have showed that hydraulic fracturing operations increase the production of oil wells by up to 30 percent and increase gas wells by 90 percent. Currently, this operation is performed on about 60% of all drilled wells.
Material and methods
In this research, for the experimental investigation of the hydraulic fracturing, considering the reservoir condition, 39 concrete cubic samples with 100 × 100 × 100 mm dimensions and 60 concrete cylindrical samples with a diameter of 54 mm and a height of 110 mm were constructed and the effect of the sample geometry and in-situ stress field on the fracture geometry, breakdown pressure, the pattern of crack propagation and finally the cross fractures in vertical wellbores were investigated.
Results and discussion
In cubic specimens under uniaxial stress, with increasing vertical stress to 8 MPa, first the breakdown pressure has been increased by about 132% and then with increasing vertical stress to 16 MPa, the breakdown pressure has been decreased by about 69%. In cylindrical specimens under uniaxial stress, with increasing vertical stress to 12 MPa, first the breakdown pressure increased by about 113% and then with increasing vertical stress to 16 MPa, the breakdown pressure decreased by about 6%. As the vertical stress increases to a certain limit, the pores and micro-cracks inside the sample close, thus the tensile strength and breakdown pressure increase. In the following, increasing vertical stress causes more small cracks to open and reduces the tensile strength of the rock. In cubic specimens under triaxial stresses, with increasing vertical stress, the breakdown pressure has been increased. Also, in cylindrical specimens under triaxial stresses as the maximum horizontal stress increased, the breakdown pressure increased.
Conclusion
The obtained results demonstrated that increasing the uniaxial stress in the vertical wellbore in both types of studied sample geometry, first the breakdown pressure increases and then from one boundary onwards, with increasing vertical stress, the breakdown pressure decreases. In cubic specimens under triaxial stress, with increasing vertical stress, the breakdown pressure increases. Additionally, in cylindrical specimens under triaxial stresses as the maximum horizontal stress increases, the breakdown pressure increases, so that, in the 8 MPa maximum horizontal stress, the breakdown pressure increases by about 81%../files/site1/files/151/3.pdf
 

Page 1 from 2    
First
Previous
1
 

© 2025 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb