Search published articles


Showing 25 results for Rock

Mehdi Talkhablou, Seyed Mahmoud Fatemi Aghda, Habibulah Heidari Renani,
Volume 16, Issue 2 (9-2022)
Abstract

The stabilization of underground spaces is one of the most challenging topics in engineering geology. There are several methods to determine the type of tunnel stabilization system, but most of these methods have several weaknesses. Therefore, the development of a method that comprehensively considers almost all parameters influencing tunnel stability and their interdependencies has not received sufficient attention. The aim of this research is to investigate the parameters influencing the stability of tunnels using the rock mechanics system method. In this paper, 6 tunnels with different geological characteristics were selected. The effective parameters on the primary stabilization of these tunnels were coded using the ESQ method. Subsequent analyses were performed using the RES rock engineering system method to estimate and evaluate the optimal tunnel stabilization system. The results showed that parameters such as weathering of the joint surface, backfill and joint spacing played a more effective role than other parameters. For comparison, the analyses were also carried out using the RMR rock mass ranking method. The comparison between the results of the RES and RMR methods showed that the results of the RES method are in better agreement with the actual tunnel conditions and the shotcrete thickness of the proposed stabilization system of the studied tunnels. Since there is no limit to the number of input parameters in this method and, on the other hand, the mutual influence of the parameters on each other is considered, the relationships obtained from the RES method in this research can be effectively used in engineering projects along with other methods.
 

Mr. Mehdi Hashemi, Dr Davood Fereidooni,
Volume 17, Issue 2 (9-2023)
Abstract

In this research, the durability and deterioration of two historical stone monuments, including the Dashkasan rock temple and the historical stone inscriptions of the Sojas cemetery in the south of Zanjan province, were investigated. For this purpose, two stone block samples were selected from each historical work for laboratory study. Based on the geological investigations, the historical monuments of the Dashkasan rock temple were carved on tuffs of the Karaj Formation. According to the thin section study, the Dashkasan temple rocks composed of the crystal vitric tuff and lithic vitric tuff and the samples of the historical inscriptions of the Sojas cemetery were limestone and very fine-grained sandstone, quartz being the dominant mineral of these rocks. In terms of physical characteristics, the samples studied have medium density and porosity. In terms of durability and deterioration, all four samples were subjected to 15 cycles of the slake durability test in normal water and sodium sulphate solution. The degradation function model and half-life of all four samples were determined and analysed. The results show that all four samples have a lower slake-durability index in sodium sulphate solution than in normal water. Due to the presence of quartz in lime or clay matrix, the samples of historical stone inscriptions from Sojas cemetery have more water absorption and porosity and are more durable, and their half-life is lower than the samples from Dashkasan rock temple.
 

M.sc. Behrooz Margan, Dr. Davood Fereidooni,
Volume 18, Issue 1 (5-2024)
Abstract

In this research, various aspects of the rock burst phenomenon in the Haji-Abad tunnel site in the Hormozgan province have been discussed. Considering that the tunnel site is located in an active tectonized environment in terms of geological conditions and the depth of the tunnel in some parts reaches more than 100 to 253 m, and also considering the variety of rocks in the tunnel site, which are massive rocks with high strength up to broken fault zones, the importance of studying and investigating the phenomenon of rock burst is very important for the safety of the labor force and equipment and the stability of the underground space. For this purpose, the Haji-Abad tunnel site has been divided into ten units of engineering geological conditions using the BGD method, which includes eight units T1 to T8 and two crashed zones Tf1 and Tf2. Then, using common experimental and semi-experimental methods, the phenomenon of rock burst in the tunnel site has been evaluated. In the experimental procedure, Goel et al.'s criterion was used, according to which the rock burst phenomenon does not occur in any of the tunnel units. Using semi-empirical methods, including the criterion of linear elastic energy of the tunnel site units in the range of very low to moderate rock burst phenomena and using the tangential stress criterion, the site units in the medium to very high range and based on the stress criteria of these units in the moderate to high range and finally, using the fragility criterion, all site units are placed in the range of high rock burst.

Mohammad Zainali, Dr Mohammad Reza Asef, Dr Ruholah Nadri,
Volume 18, Issue 1 (5-2024)
Abstract

This paper investigates the application of geomechanical and geological engineering methods to determine the optimum working face width for the safe and efficient extraction of manganese ore extraction at the Venarch Mine (Qom Province, Central part of Iran). The underground workings on the west face (240m depth) present significant geotechnical challenges due to the presence of faults, clay seams, and loose rock layers. These features require careful careful stability analysis to ensure the safety and economic viability of the underground mining operation. This study uses three established methods for rock mass classification and stability assessment. The Rock Mass Rating (RMR) classification system, the Q-system (Barton), and the numerical analysis using Plaxis 3D software. A robust and data-driven approach to determining the optimum workshop width was achieved by employing a synergistic combination of these three methods, together with meticulous ground observations and expert engineering judgement. This framework offers a powerful tool for determining the optimal and safe workshop width for this sector of the mine. By capitalizing on the strengths of each methodology, this research aims to establish a data-driven and informed decision-making process to ensure a stable and economically viable approach.


Page 2 from 2     

© 2024 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb