Search published articles



Ali Massumi, Maryam Rahmati Selkisari,
Volume 11, Issue 3 (1-2018)
Abstract

In recent decades many researchers have studied on the damage assessment of structures after a seismic event. To assess the damage of structures under an earthquake, it is so important to study the correlations between earthquake parameters and damages of the structures. A lot of seismic parameters have been defined by researchers to characterize an earthquake. Spectral parameters of an earthquake convey a variety of information about ground motion, so they can properly characterize an earthquake. Also a lot of damage indices were proposed by researchers to quantify the damage of the structures or to rank their vulnerability relative to each other. Park-Ang index is one of the best indices to describe the damage of a structure. In this paper, the correlations between spectral parameters of earthquakes and Park-Ang indices are studied. Three RC frames with different height are analyzed under far-fault earthquake records by nonlinear dynamic analyses. The correlations between spectral parameters and Park-Ang indices of the frames are calculated. The results show that in all the frames most of spectral parameters have strong correlations with damage intensity. In order to estimate the damage potential of an earthquake, some spectral parameters which have high correlations with damage intensity can be proper indices. Housner intensity, acceleration spectrum intensity and velocity spectrum intensity are shown to have strong correlations with damage intensity. In this paper, a new spectral parameter which has high correlation with damage intensity is achieved. 
Kobra Jafari, Naser Moghaddas, Alireza Mazloumi Bajestani, Azam Ghazi,
Volume 11, Issue 3 (1-2018)
Abstract


Mohammad Hosein Ghobadi, Paria Behzadtabar,
Volume 11, Issue 3 (1-2018)
Abstract

Rock anisotropy plays an important role in engineering behavior of rocks. Slates are anisotropic rocks which have long been used for gable roof, floor tiles, borrow materials, and other purposes. The slates studied in this research are calcareous and have a porphyro-lepidoblastic texture. To determine the role of the anisotropy on the tensile strength and fracture pattern, two variables including ψ (the core axis angle to foliation) and β (the angle between the axis of loading and foliation) in the Brazilian tests were used. The angles were selected at 15° intervals. Thus, for both ψ and β, seven angles of 0˚, 15˚, 30˚, 45˚, 60˚, 75˚, and 90˚ were selected (i.e., there are 43 possible modes). In order to name and examine the failure pattern, 11 models were proposed. The average value of the failure strength for the three stations varies from 3.21 MPa to 20.94 MPa. Based on the obtained results, there is a direct relation between the average tensile strength and density. A comparison between Brazilian test data under dry and saturation conditions shows that the saturated Brazilian tensile strength is 30.8% less than the dry Brazilian tensile strength. Moreover, the changes in fracture length with the changes in ψ and β indicate an inverse relation. Eventually, the average of tensile strength (σt) and strength anisotropy index (Ia) demonstrates that the influence of orientation angle (ψ) is much larger than that of foliation-loading angle (β).
 
Fariborz Dehghani, Hadi Shahir, Ali Ghanbari,
Volume 11, Issue 3 (1-2018)
Abstract

In the narrow geosynthetic-reinforced retaining walls a stable rear wall exists in a short distance and so there is no enough space to extend appropriate length of reinforcements. In this case, the probability of overturning of retaining wall increases especially when subjected to earthquake loading. To increase the stability of the wall, reinforcements may be connected to the stable rear surface. Alternative solution is the utilization of full-height cast in-place concrete facing in order to resist the earth pressure by combined actions of reinforcements pullout capacity and facing flexural rigidity. One of the main questions about this type of walls is the portion of earth pressure resisted by the facing. In this study, the seismic earth pressure of narrow geosynthetic-reinforced backfill on rigid facing was evaluated using limit equilibrium approach and horizontal slices method. The critical failure surface was assumed to extend linearly from the wall toe to the rear surface and then moves along the interface of the backfill and rear surface up to the backfill surface. The effects of various parameters such as wall aspect ratio have been investigated. The obtained results show that the applied soil pressure on wall facing will be increased with depth in the upper part of the wall according to the Mononobe-Okabe equation, but its pattern is inversed in the lower part of the wall and it decreases until it reaches to zero at the wall toe. The results of analyses indicate that the attracted soil thrust by the facing increases with lessening of backfill width.
Behrouz Ahmadpour, Masoud Amel Sakhi,
Volume 11, Issue 3 (1-2018)
Abstract

Earth-fill dams stability in steady state seepage condition is very important, especially during earthquakes. Numerical software analyses require accurate and realistic modeling of construction stages. Since earth-fill dams are constructed in different layers, so these conditions should be considered in software modeling to achieve a reasonable design. In this study, an earth-fill dam is modeled in PLAXIS software and the effects of the number and shape of layers are studied in dry and steady-state conditions. Obtained results in static and pseudo-static analyses show that modeling of earth-fill dams with different layers has significant effects on shear stresses and horizontal displacements. For example, horizontal displacements and shear stresses, increase at least 50% and 17% respectively, in comparison with single layer models. According to the obtained results, it can be mentioned that modeling of an earth-fill dam in the layered model and rather in inclined layers are more reasonable
Nima Headarzadeh, Tania Taslimi,
Volume 11, Issue 4 (5-2018)
Abstract

Introduction
One of the most important 1-ring aromatic organic pollutants is phenol and its related compounds. These compounds are classified as hazardous wastes base on U.S.EPA primary contaminates list. The phenolic compounds are very poisonous and these are harmful for human health and also for other biota.
To control the movement of such hazardous organic waste in a contaminated soil, solidification/stabilization (S/S) process can be an effective alternative.  Due to the negative impact of organic compounds on the cement hydration, the cement-based S/S may be not effective for controlling the movement of such pollutants. To avoid these effects, using some additives during solidification period has been recommended. One of the proposed of such compounds is organophilic clay that is the modified montmorillonite by quaternary ammonium salts (QAS). There are several researches to evaluate the organophilic clay effect on adsorption and stabilization of organic compounds during S/S process. The effectivity of S/S process can be examined by several tests such as leaching test, durability, unconfined compressive strength (UCS), etc.
In this study, efficiency of ordinary and organophilic clay was evaluated in the solidification and stabilization process based on unconfined compressive strength of a phenol-contaminated soil.
Material and methods
In this study, an artificially phenol contaminated sand was considered to evaluate the effectivity of the white cement based S/S process by using two different additives of ordinary and organophilic clay.
The contaminated sand contains 2000 ppm of phenol. S/S process was conducted on 14 samples with different amounts of white cement (15 and 30 wt%) as binder and ordinary/organophilic clay (0, 8, 15, and 30 wt % for each of them) as the additives. Two zero percent additive samples are considered as control samples.
All samples were cured for 28 days and then UCS test was conducted for all of them.
Results and discussion
Unconfined compressive strength of all examined samples were ranged from 2226 to 6999 KPa. In the samples with equal amount of cement, th higher UCS values can be observed in blank samples (without any additives and phenol). By adding phenol in the examined sand, UCS of the solidified sample reduces 3 -3.5%.Moreover, results showed that UCS was reduced by increasing the amount of clays. The reduction of the samples containing organophilic clay was higher than samples containing ordinary clay. Unconfined compressive strength values of all samples met the minimum standards indicated by France, Netherlands, Britain and America for disposal in a sanitary landfill. The sample with 30% white cement and 8% bentonite was the maximum amount of UCS (4856 KPa) and the sample with 15% white cement and 30% organophilic clay was the minimum one (2226 KPa). In this study, the average cost of organophilic clay-based solidified samples was 2.3 to 2.8 times more than the average cost of the bentonite-based solidified samples.
Conclusion
In this study, the strength of the cement-based solidified samples contaminated by phenol was investigated. The summary of the findings of the research is as follows:
1. By adding the phenol to pure sand, the UCS of the samples can be reduced 3-3.5 %.
2. Addition of organophilic clay reduces the UCS of the samples more than the ordinary clay (bentonite) in the same amount.
3. All samples met the recommended UCS level for the S/S process. The minimum UCS level is for the sample with 15% of cement and 30% of organophilic clay.
The cost of S/S process is between 23 and 650 $/ton of contaminated soil depending on the amount of used additives and binder. The samples containing organophilic clay has a higher cost than the similar sample containing ordinary clay.
4. To evaluate the S/S process effectivity, a leaching test of phenol (such as TCLP) is recommended  ./files/site1/files/0Extended_Abstract2.pdf
Ali Reza Najibi, Mohammad Ghafoori, Gholam Reza Lashkaripour, Mohammad Reza Asef,
Volume 11, Issue 4 (5-2018)
Abstract

Introduction
Determination of in situ stress-direction and magnitude are prerequisite for any oil well drilling and oil field development such as hydraulic fracturing. One of the simplest and most widely used methods is called borehole breakout analysis. Breakouts are compression fractures made in the direction of minimum horizontal in situ stress (Sh), if drilling mud pressure be lower than optimum mud pressure. Some borehole imaging logs such as FMI, FMS and UBI are appropriate tools for wellbore fracture detection. These fractures are distinguished in the logs as dark and symmetrical points (or lines) on both sides of the well and are used as an indicator for in situ stress studies. The size and shape of these fractures are strongly depend on the magnitude of the in situ stress. Therefore, many researchers suggested that by analyzing the geometric shape of the borehole breakout is an appropriate technique for estimation of in situ stress components. .... ./files/site1/files/0Extended_Abstract7.pdf
 
Majid Mahdi, Hooshang Katebi,
Volume 11, Issue 4 (5-2018)
Abstract

 Introduction
Recently, several studies on buried pipelines have been conducted to determine their uplift behavior as a function of burial depth, type of soil, and degree of compaction, using mathematical, numerical and experimental modeling.
One of the geosynthetics applications is the construction of a reinforced soil foundation to increase the bearing capacity of shallow spread footings. Recently, a new reinforcement element to improve the bearing capacity of soils has been introduced and numerically studied by Hatef et al.  The main idea behind the new system is adding anchors to ordinary geogrid. This system has been named as Grid-Anchor (it is not a trade name yet). In this system, a foundation that is supported by the soil reinforced with Grid-Anchor is used; the anchors are made from 10×10×10 mm cubic elements. The obtained results indicate that the Grid-Anchor system of reinforcing can increase the bearing capacity 2.74 times greater than that for ordinary geogrid and 4.43 times greater than for non-reinforced sand...../files/site1/files/0Extended_Abstract6.pdf
 


Mojtaba Bahaaddini,
Volume 11, Issue 4 (5-2018)
Abstract

Introduction
Determination of the mechanical properties of rock materials has been remained as a challenge for engineering geologists. In-situ tests are rarely used to determine the mechanical properties of rocks due to difficulties in sample preparation, performing and interpretation of the results, high costs as well as the required long time for doing the experiments. The common approach to determine the mechanical properties of rock materials is through conducting laboratory experiments and estimation the in-situ properties based on these laboratory results. This approximation, which is called scale effect, has been remained as a challenge for engineering geologists and practical rock engineers for decades. ...../files/site1/files/0Extended_Abstract1.pdf
Gholamhosein Tavakoli Mehrjard, Fariba Motarjemi,
Volume 12, Issue 2 (10-2018)
Abstract

Introduction
The general failure mechanism of soil element in geotechnical structures is shear failure under static and dynamic loads. Therefore, assessment of soils’ shear strength parameters is very crucial in the performance of geotechnical structures, especially in slope stability. Tavakoli Mehrjardi et al. (2016) showed that by increasing soil grain size in unreinforced soil masses, bearing capacity of foundation increases due to increasing shear strength parameters of soil mass. Furthermore, Tavakoli Mehrjardi and Khazaei (2017) found out that generally, for all reinforced and unreinforced conditions, cyclic bearing capacity was enhanced by increasing the medium grains size of backfills. Taking into account the deficiency of studies on the shear characteristics of soil, a series of large direct shear test have been carried out to investigate and to compare effects of the soil’s physical properties such as aggregate size and relative density, besides of normal stress, on the shear characteristics of the backfills.
Material and Test Program
In this study, three types of uniformly graded soils as fill materials with the medium grain size (D50) of 3, 6 and 12 mm were considered. These soils are classified as SP and GP in the Unified Soil Classification System. It should be mentioned that these materials can be used in railroad as ballast and in retaining walls as fill materials. The current study aims to investigate strength characteristics of the backfills, influenced by different parameters such as relative density of the fill materials, normal stress on the shear plane and aggregate size of the fill materials. To cover all the matters, 18 large-scale direct shear tests have been scheduled. These tests encompass two relative densities of fill materials (50% and 70% which represent medium dense and dense backfill, respectively), three aggregate sizes of fill materials (3, 6 and 12 mm- selected based on the scaling criteria on size of shear box) and three normal stresses (100, 200 and 300 kPa- these values cover rather low to high vertical stress in a soil element of common geotechnical projects) have been examined. It should be mentioned that, prior to shearing, the normal stress was applied to the specimens for a period of 1 h, in order to stabilize the soil particles from any possible creep. As all materials used in this research are of coarse-grained type and the experiments were performed under dry conditions, the displacement rate of 0.5 mm/min was selected. During the tests, the applied normal stress, displacement of the lower box, shear force mobilized at the interface and vertical displacements of the cap were continuously recorded.
Results and discussion
The curves of shear stress as a function of shear displacement and also shear displacement-vertical displacement for samples show that shear stress dropped down to a specific amount of residual shear strength after reaching maximum amount of shear stress . It was observed that increasing the particle size and relative density of the fill materials mostly fortify interlocking of the grains which in turn, resulted in increasing the tendency to expansion through the shear plane. On the other hand, the initial compression has decreased and dilation was started from a smaller shear displacement. This may be interpreted that as the soil particles size increases, more expansion is required to reach the maximum shear strength. Moreover, comparing the observed behavior, it is found out that unlike the effect of grain size and density, increasing the normal stress caused the materials to be more compressed, resulted in reducing expansion and increasing the initial compression of the soil mass. This conceivably means that increasing normal stress, transferred on shear plane, can change the failure mechanism of materials, from dilatancy failure to bulging failure under shearing. From the results, it was found out that increasing medium grains size of soil from 3 mm to 12 mm ended to improvement in the maximum friction angle at relative density 50 and 70% by the value up to 4.4 and 5.8 degree, respectively. In fact, due to increasing grain size, the grains interlocking have been fortified. In order to have a comparison, the maximum dilation angles of all fill materials, mobilized at the shear plane, have been derived. Accordingly, the maximum dilation angle was increased with the increment of the fill grains size and relative density of the material. Nevertheless, by considering variation of peak dilation angle with normal stress, it is found out that the normal stress had a negative influence on the advancement of interface’s dilation angle. These findings can be directly interpreted by considering the compression/expansion of the materials during the increment of shear displacements.
Conclusion
The current study, consists of 18 large-scale direct shear tests, aims to investigate shear characteristics of soil which influenced by different parameters such as relative density of the fill materials, normal stress at the shear plane and aggregate size of the fill materials. Eventually, the following conclusions are presented:
  • Increasing relative density, soil particle size and normal stress have beneficial effect in shear strength improvement. But, the mechanisms of each parameter in this enhancement is different.
  • The dilation rate of shear interfaces directly complies with changes in the ratio of applied shear stress to vertical stress. So, the maximum dilation angle and the maximum ratio  mobilized at the shear plane have occurred around the same shear displacement.
  • Maximum values of friction and dilation angels have been occurred around the same shear displacement. Moreover, compaction effort leads to increase the required shear displacements to approach the maximum shear characteristics.

Mahmoud Behnia, Javad Tavakoli, Masoud Cheraghi Seifabad,
Volume 12, Issue 2 (10-2018)
Abstract

Introduction
The rock block volumes are formed due to the intersection of discontinuities in the jointed rock mass. The block dimensions affected by joint spacing, joint orientation, joint sets, are taken to be the most important parameters determining the rock mass behavior, strength parameters, and deformations. In the numerical modeling using distinct element method, the creation of the discontinuities can affect the final results very much. Using 3DEC software, it is possible to create joint sets in four conditions: regular and persistent, regular and non-persistent, non-regular and persistent, irregular and non-persistent. As an important point to consider, the major effect of block dimensions on rock mass behavior, strength parameters and deformation modulus can help to decide which one is most suitable to indicate the real conditions of rock mass. As explained in the previous studies, the use of persistent joints leads to the block dimensions being considered as small ones. In this way, due to the high strength of intact rock compared to the joints, the possibility of instability increases.
Material and methods
In this research, from quantitative point of view, Geological Strength Index (GSI) is calculated, based on block dimensions as an influential parameter, to consider the most appropriate case for creating joints in the numerical method. In this regard, according to valuable studies in Bakhtiari dam structure, the characteristics of discontinuities system and GSI of rock mass are utilized to come up with real conditions. Then, the modeling is done with different conditions of joints, block volume distribution, GSI for each case, and the results are compared with quantitative ones. And then the most suitable case for creation of joints in numerical modeling is suggested by using 3 DEC software, regarding the blocks volumes, type of distribution function, and GSI value. Also, the accuracy of this finding is investigated for other structures, independently of input parameters, by making changes in spacing, and joints persistence as two effective parameters in rock blocks dimensions. Owing to the difficulty in the accurate definition of joints persistence, which is related to dimensions of the location, the numerical models for joint persistence are done in an acceptable level in order to create blocks with high conformity in terms of the dimensions. Then, the comparison is made between block dimensions from perspectives of numerical models and GSI values, to choose the best ones showing high conformity with real conditions.
Results and discussion
The comparison of the modeling results using creation of joints in different cases with quantitative results obtained according to geological strength shows that the created block volumes are not properly distributed due to the creation of joints as irregular ones in the two cases of persistent and non-persistent. In this case, the blocks volume changes from a few centimeter to cubic meter, and as the block dimensions increase, the created blocks become bigger. Thus, according to the created blocks volume and the obtained GSI range, the creation of joints is not a suitable method as an irregular one. The creation of regular and persistent joints is not an appropriate method either, as the most created blocks are small, and blocks volume distributions do not comply with quantitative distribution. But with creation of joints as regular and persistent ones, the distribution function of blocks volume in numerical method and quantitative method is log normal. Therefore, according to the created blocks dimensions and GSI range using 3DEC software, the most suitable case is the creation of joints as regular and non-persistent ones. 
Conclusion
According to the obtained results in the four cases, when the joints are considered only as regular and non-persistent ones, the blocks volume range is more compatible with real conditions and follows log normal distribution. Thus it can be concluded that the suggested method for creation of joints in the numerical modeling using 3DEC software is more suitable than others considering the rock blocks dimensions and their distributions. This method can be utilized in any structure to accurately define the persistence of joints regarding created blocks dimension.
Mahmoud Babalar, Ali Raeesi Estabragh, Jamal Abdolahi,
Volume 12, Issue 2 (10-2018)
Abstract

Introduction
Contaminants can be categorized into organic and inorganic groups. Organic contaminants are carbon based, and their presence in waste forms may be as a single contaminant associated with inorganic contaminants, or a suite of complex mixtures which may be toxic at very low concentrations. Organics of greatest environmental concern are usually refined petroleum products, chlorinated and non-chlorinated solvents, manufactured biocides, organic sledges and substances from manufacturing processes. Most contamination due to organics are associated with accidental spills and leaks, originating from equipment cleaning, maintenance, storage tanks, residue from used containers and outdated material (Yong and Mulligan, 2004). Transport and fate of organic contaminants are important. Organic contamination migrations are due to advection (by fluid flow through soil) and diffusion, but other forms of transport e.g. infiltration may also contribute to migration (Environment Agency, 2002). The response of the soil to a contaminant depends upon the type of soil and the nature of the contaminant. The sensitivity of soil to contaminants depends upon the type of soil (such as particle size, mineral structure, bonding characteristics between particles and ion exchange capacity) and the nature of contaminants. Fang (1997) defined a sensitivity index (ranging from 0 to 1) to different types of soil. Sensitivity of sand and gravel (0.01 to 0.1) is much lower than clay particles (0.6-0.9). There are a number of techniques for remediation of contaminated land. These include physical (washing, flushing, thermal, vacuum extraction, solvent extraction), chemical (stabilization and solidification) and bioremediation techniques. However, the applicability and feasibility of different methods for remediation are dependent on many factors such as soil characteristics (soil type, degree of compaction and saturation), site geology, depth of contamination, extent of contaminant in lateral direction, topography, surface and ground water and the type and amount of contaminants. Thermal treatment and using surfactants are the most popular methods for remediating the soil contaminated with petroleum compounds. In this research remediation of a soil contaminated with different percentages of gasoline was studied through physical techniques in laboratory. The applied physical techniques were thermal technique and use of two different kinds of surfactants. The obtained results were compared with each other and discussion was performed.
Material and methods
Soil, gasoline and surfactant are the basic materials that were used in this work. The soil that was used in this testing program was a clayey soil. Two different types of ionic and nonionic surfactant, namely Tween 80 and SDS, were used in this work for remediating soil, contaminated with gasoline. Contaminated soil was prepared by adding 5 and 10 % weight (to air dried soil) of gasoline. 6 kg air dried soil was selected and the desired amount of gasoline was weighted, then it was sprayed on the soil and thoroughly mixed by hand for about 2 hours. The prepared mixture was kept inside a covered container for a week in order to come to equilibrium with the soil. For thermal remediation the contaminated soil with a specific percent of gasoline was kept inside a constant convection oven at 50, 100, and 150oC for about one week to desorb the contaminating compound. Tween 80 and SDS were used for remediation of the contaminated soil. The amount of used Tween 80 was 25% weight of contaminating compound and selection of SDS amount was based on 50% weight of contaminating matter. The samples for the main tests were prepared by static compaction according to the optimum water content and maximum dry unit weight that were obtained from standard compaction tests. Atterberg limits, grain size distribution, compaction and unconfined compression tests were performed on samples of natural, contaminated and remediated soil according to the ASTM standard.
Results and discussion
The results of Atterberg limits (LL, PL and PI) for the contaminated soil (with 5 and 10 % gasoline) indicated that the values of them are increased with increasing the percent of gasoline. These values are nearly the same as natural soil after remediation with thermal method and surfactants. The grain size distribution curves were determined for the natural soil, contaminated soil with 5% and10% gasoline and soil remediated by thermal and surfactant techniques. The results showed that by using thermal technique the percent of clay is decreased and the percent of sand and particularly silt is increased by increasing temperature. The results of grain size distribution for the soils remediated by SDS and Tween 80 showed that the percent of clay is reduced but the percent of silt and sand are increased. Comparing the results of the two surfactants shows that the effect of Tween 80 in reduction of the percent of clay is more than SDS. The results showed that after thermal treatment, the maximum dry unit weight decreases and the optimum water content increases. For the contaminated soil with gasoline a reduction in maximum dry unit weight is observed compared with natural soil. The effect of SDS and Tween 80 on soil remediation is reduction in maximum dry unit weight and optimum water content. The results of compression strength showed that adding gasoline to soil causes a reduction in final strength and this reduction is a function of gasoline percent. The results also indicated that the strength of remediated soil by thermal or surfactant techniques, is reached nearly to the strength of natural soil. Scanning electron microscopy (SEM) tests were performed on the samples in order to observe the microstructure of the samples in different conditions (natural and contaminated with different percent of gasoline). The results of SEM showed that the structure of soil is changed by contamination to gasoline. It can be said that the gasoline causes reduction in the thickness of DDL because of low dielectric constant and hence a flocculated structure is formed. In the flocculated structure due to attractive forces, the fine particles paste to each other and form coarse particles. Therefore, variations in the Atterberg limits and compaction parameters can be resulted from forming new structure by adding gasoline. These results of compression strength are not in agreement with the theory of diffuse double layer (DDL). The reduction in dielectric constant would cause a flocculated structure in soil and the strength of the contaminated soil should be increased in comparison with the natural soil. It can be said the viscosity of gasoline cause reduction in the strength of contaminated soil.
Conclusion
In this experimental work a cohesive soil was contaminated with 5% and 10% of gasoline. The experimental tests showed that the properties of contaminated soil are different from natural soil and the change in the properties is a function of gasoline percent. The contaminated soil, was remediated by thermal treatment and also using two surfactants. The results also showed that using surfactants is more effective than using thermal method in soil remediation, and can treat the soil nearly to its original condition.
-Base on the SEM analysis results, adding gasoline to the soil, will change the soil micro structure to a flocculated one.  
-The gradation curves show that adding gasoline to the soil will change the gradation from finer to coarser.
- Contamination to gasoline will change the compaction parameters of the soil, and will reduce the soil final strength significantly.
- The results show that using thermal method and surfactants is effective in remediating the soil, but it is more effective to use surfactants. 
References
Yong, R.N., Mulligan,. “Natural attenuation of the contaminants in soil”, CRC press, Boca Raton, FL (2004).
Fang, M.Y. “Introduction to Environmental Geotechnology”, CRC Press,FL.USA, (1997).
Delara Oshnaviyeh, Rouzbeh Dabiri2,
Volume 12, Issue 2 (10-2018)
Abstract

Introduction
When loose sand is subjected to seismic shaking, it tends to volume reduction and settlement. The density of the under layers is revealed in the settlement of the ground surface that causes the destruction of the structures located on ground surface. In dry sand layer, settlement in severe shakings occurs under a constant and effective stress condition and very rapid stress. In this regard, the sand deposit settlement is completed before the end of an earthquake, but if the sandy soil layer is saturated and drainage is limited the condition is prepared of fixed volume situation and the major effect of the seismic shocks is generation of exceed pore water pressure. Therefore, the deposit settlement of saturated sand requires a longer time, varying from a few minutes to a few days, depending on the permeability and compressibility of the soil and the length of the drainage path. The main purpose of the present study is to evaluate liquefaction hazards along Tabriz Metro Line 2 with using Standard Penetration test (SPT) and shear wave velocity (Vs) methods. Also, the probable rate of settlement in the soil layers in study area and correlation with liquefaction potential index (LPI) according to both procedure have been determined and discussed in the following paragraphs.
Material and Methods
In order to evaluate the liquefaction potential of soils using two field methods, geotechnical information of 54 boreholes in Tabriz Metro Line 2 were collected. The types of soil and geotechnical properties can affect the liquefaction potential. In this study, the gravely sand, silty sand, silty and sandy soils were studied. Ground water level is one of the main parameters in in soil liquefaction potential evaluation of soils. Variation of water level in boreholes is 2 to 30 meters. The peak ground acceleration (PGA) is necessary for the analysis of boreholes to evaluate liquefaction potential of soils. PGA values were selected in each boreholes position according to the Iranian Code of Practice for Seismic Resistant Design of Buildings (Code-2800-ver.4) equal to 0.35g (for return period 475 years and design life 50 years). Liquefaction potential of soil layers based on SPT results with appliying Idriss and Boulanger (2010) method has been assessed. Andrus, Stokoe and Jung (2004) procedure was used in shear wave velocity (Vs) method (with assuming cementation and un cementation condition in soils). Liquefaction potential index (LPI) of soil layers was calculated for both field tests results. Then, probable rate of settlement due to liquefaction in saturate soil layers was determined. Tokimatsu and Seed (1978) method applied for SPT results, Yoshimine (1992), Yoshimine et al. (2006) and Yi (2009) procedures have been used in Vs test. Finally, correlation between rate of settlement and LPI results were determined.
Results and discussions
Outcomes of this study can be explained in below:
1. Results obtained from comparison of both methods in liquefaction potential evaluation have been showed, agreement between two methods have been happened rarely. Specially, with assuming cementation condition in soils, LPI obtained from Vs method is more than SPT. Although, different factors can be affected at uncertainties in SPT results such as type of drilling machine, energy efficiency and accuracy of test performing. Also, in shear wave velocity method, maximum velocity for occurring liquefaction in soil layers () related to fines content percentage. It is possible that boundary values in procedure not compatible with geotechnical properties in study area.
2. Evaluation of probable rate of settlements in soil layer in study area have been showed that settlement values obtained from Vs is more than SPT. This condition is compatible with LPI amounts.
Conclusions
In sum up, settlement due to liquefaction in saturate soil layers is one of the important phenomena in geotechnical earthquake engineering. Maximum rate of settlement in soil layers in study area is equal 0.45m based on SPT method and 0.9m according to Vs procedure which should be considered. Accordingly, serious damages can be inflicted to buildings, underground structures and life lines in study area.  Therefore, it is suggested in future researches with using empirical and numerical (or soft computing) methods based on field and experimental tests results a detailed assessment conducted and influence of various parameters on settlement of soil layers be determined and the items listed below should be considered:
- Cementation parameter (C) values of soils in shear wave velocity method maybe not compatible with geotechnical properties in study area. It should be evaluated exactly. 
- In this research, peak ground acceleration (PGA) value was selected based on code 2800-ver.5. As regard to Tabriz Metro Line 2 is beside to Tabriz North Fault, PGA value according to historical earthquake catalogue and seismic risk analysis should be evaluated and seismic hazard have to determine with accuracy. 
Sassan Narimannejad, Alireza Jafari-Nedoshan, Ali Massumi, Abdollah Sohrabi-Bidar, Ali Ghanbari1,
Volume 12, Issue 2 (10-2018)
Abstract

Introduction
Local site conditions considerably influence all characteristics of the ground strong motion including the domain, frequency content, and duration. The level of such an effect could be considered as a function of geometry, properties of the materials embedded in the underlying layers, the site topography, and properties of excitement. Site effect fall into two categories: a) the effect of the surface soft layers triggered by the shear velocity differences between the soil layers and b) the surface and subsurface topography effects that lead to the wave reflection and refraction based on the site geometry, and subsequently enhance the level of amplification.
Since most cities have been constructed in the vicinity of or on sedimentary basins, geotechnical earthquake engineering devotes particular attention to effects of the sedimentary basins. Basin edge curvature deposited with soft soils are capable to trap the body waves and generated surface waves within the deposit layers. Such waves could create stronger and lengthier vibrations than those estimated in a 1D analysis that assumes the shear waves to be vertically propagated.
Although critically important, the 2D effect of the site has not been included in seismic codes and standards of the world. This might be due to the fact that the site effect depends on a number of parameters such as the site geometry, the type of wave excitement, properties of the materials, etc. that in return make it almost out of the question to make predictions about the effect. This study was an effort to compare the responses of four sedimentary basins with hypothetical geometries of rectangular, trapezoidal, elliptical, and triangular shapes in order to examine the effect of the geometrical shape of the basin on its responses and the extent of the response sensitivity to the excitation frequency of the wave. The study assumed the edge to depth proportion to be both constant and equal in all four basins so that the effect of the geometrical shape could be equally examined and compared in all four basins.      
Material and methods
In order to validate the results of the sedimentary basin modeling, firstly, ABAQUS finite element software was used to create a free field motion of a semi-circular alluvium valley in accordance with Kamalian et al. (2006) and Moassesian and Darvinsky (1987).  Then, the results from the model were compared with those from the above mentioned studies. The following descriptions are to present the model in details.
To evaluate the geometrical effect of the sedimentary basin on its response, the authors relied on the software to examine four sedimentary basins with the fundamental frequency (2.04 Hz). The basins enjoyed rectangular, trapezoidal, elliptical, and triangular geometrical shapes with a constant edge to depth proportion (49m to 300m respectively). The implicit method was also applied to perform the dynamic analysis. The materials were all viscoelastic and homogeneous. The soil behavior/treatment model was considered to be of a linear nature.  The Rayleigh damping model was used to specify the damping level. The soil element was a plane strain and SV waves (the Ricker wavelet) were used for seismic loadings in a vertical dispersion. The side boundaries (right and left) of the model were of a combinational type (viscous and free field boundaries); the down side boundary was composed of viscous. To achieve higher levels of wave absorptions, heavy columns were used as the free filed columns.
Next, it was the time to conduct the 1D analysis of the site. Three waves were in use in order to examine the effect of the frequency content of the excitation load on the basin response: 1) a wave with the dominant frequency of 1Hz that was out of the frequency range of all basins (2.04 Hz), a second wave with the dominant frequency of 2Hz that was close to the fundamental frequency of all basins, and a third wave with the dominant frequency of 4Hz. The waves were applied to a 2Dmodel. The results were compared with those obtained from a 1Dmodel in terms of the timing.
Then, the basin responses to all three waves (1, 2, and 4 Hz) were subjected to an individual analysis in order to examine the sensitivity of each basin response to its geometrical shape. Results indicated that while the responses of the rectangular and trapezoidal basins were significantly more sensitive to the excitation frequencies, the elliptical and triangular basins showed more stable behaviors to such frequencies. The final stage of the study was dedicated to examine the site 2D effect during the ground motion.
Results and Conclusions
According to the results of the present study, it could be suggested that the geometrical shape of the sedimentary basin has a significant effect on the responses of the field of seismic waves and that it could result in so different responses from the ones attained after a 1D analysis of the site. In addition, the pattern of the seismic waves’ responses is highly dependent on the geometrical shape and the frequency content of the seismic load. Also, the location where the maximum horizontal acceleration occurs along with the sedimentary basin depends on the excitation wave and varies accordingly. Further, it could be suggested that the site 2D effect results in both considerable amplification and an increase in the length of ground motion.
The results of the 2D analysis showed remarkable differences with their 1D counterparts: a 1.45 larger response for the rectangular basin, a 1.28 larger response for the trapezoidal basin, a 1.22 larger response for the elliptical basin, and a 1.19 larger response for the triangular basin.
With the frequency of 1 Hz where the excitation frequency is out of the basin range (i.e. the excitation frequency is below the lowest frequency of basin), the sedimentary basin did not show any signs of amplification and chaos (unlike two other frequencies); instead, it was a cause for de-amplification.
The frequency of 2 Hz that is subject to resonance resulted in amplifications (absent in 1D analysis) and there are traces of a reduction in the acceleration responses near to the edges of the basins. The proportion of the amplification (in the center of the basins) in 2D to 1D analysis was 1.4 for the rectangular basin, 1.28 for the trapezoidal basin, 1.22 for the elliptical basin, and 1.15 for the triangular basin.
 
Masoud Zare Naghadehi, Seyed Davood Mohammadi, Mostafa Karimi,
Volume 12, Issue 2 (10-2018)
Abstract

Introduction
The selection of the best subsurface exploration methods corresponding to geotechnical, topographical and economic circumstances of the project is one of the most effective factors in the success of a tunneling project. On the other hand, the development of a decision model and consequently choosing the most suitable alternatives are complex tasks. Therefore, prioritizing and selecting the best subsurface exploration methods, as the main aim of this study, can reduce the economic and social costs associated with the execution of a tunneling project. For this purpose, ten experts from tunneling community have been asked to weigh the chosen criteria of the problem in this research. A methodology utilized in this study is the Analytical Hierarchy Process (AHP) which proved useful in engineering decision-making problems. The other method is TOPSIS, one that has continuously been used in decision making in the recent decades. These two techniques have been combined and utilized in this work to rank the aforementioned exploration methods.
 
 
Material and methods
The study area is located about 109 km far from Shahrekord city amid the Zagros mountains. The Sabzkooh tunnel development plan has been under evaluation in the time that this research was being done. The geology of the area majorly encompasses sedimentary rocks which have been outcropped as folds, faults, and fractured and altered zones. However, the variety of the lithological units in the tunnel route is high, and units of limestone and shales also exist over the path.
In the first step, geological and topographic maps were produced for the study area, and general information from the tunnel path was collected and examined. Suitable exploration methods were evaluated, and six main methods were chosen to be considered as the alternatives of the study including (a) discontinuities study, (b) Lugeon tests, (c) RQD, (d) Geo-electric, (e) Gravimetry, and (f) Seismic methods. Moreover, nine criteria ranging from “volume of the available information” and “environmental impact” to “cost” and “accuracy” of the employed methods were taken into account. A pairwise comparison matrix was then developed, and the experts were asked to fill it out. The importance of each criterion was then simply calculated through this matrix. Alternatives pairwise comparison matrices were also filled out and, in this manner, the alternatives could be ranked using the AHP technique. Next, the TOPSIS technique was employed for the same purpose using a rather different process.
Results and discussion
Both AHP and TOPSIS techniques show very close results for ranking of the alternatives in this study. They rank the three Seismic, Geo-electric and Discontinuities studies methods as the best ones for the considered tunneling project. The only difference between these two techniques is how they determine the worst method. The AHP ranks the Lugeon as the last rank among the six methods whereas the TOPSIS determines the RQD as the least reliable method of exploration for the Sabzkooh tunnel project.
 
 
Conclusion
The prioritization and the subsequent selection of the most reliable exploration methods for an underground excavation project is a crucial task amid technical decisions. In this research, two major multi-criteria decision-making methods including AHP and TOPSIS were considered and applied for the Sabzkooh tunnel in Iran. The results indicate a high agreement between the two methodologies even though these two approaches decide differently on the least reliable methods to be applied.
Omid Naeemifar, S.shahab Yasrobi,
Volume 12, Issue 2 (10-2018)
Abstract

of initial texture and plastic fine content has been investigated. In order to model the different deposition condition four different specimen preparation methods are used. The tests are conducted on sands and its combination with to 25 fine percent using static and cyclic method. Four different specimen preparation methods are used consisting of Dry Funnel Deposition (DFD), Water Sedimentation (WS), Moist Tamping (MT) and Air Pluviation (AP). Each method may be useful to model the behavior of some special deposited soils. For example, DFD is the best method to model the natural deposition of silty sands, while the WS method is suitable for simulating the sands natural deposition in the rivers. MT method is the best method to simulate the behavior of compacted embankments while SD method is suitable to prevent the segregation of particles with respect to other methods like Water Pluviation. Effect of sample preparation methods on the sands and silty sands behavior is investigated to some extent, while the clayey sands are rarely considered. The results show that water sedimentation method, Air pluviation method and Dry funnel deposition method tends to create dilative textures with continuous dilative behavior even in high clay fine content. In contrast, the wet tamping method shows the dilative behavior only for clean sands specimens and increasing fines will results in instability and complete strain softening behavior. In cyclic loading the difference between different methods are less with respect to static loading. It seems that the results of different methods tends to be identical with increasing in fine content. In general, increasing fine content up to 20 percent results in more instability. After that a threshold value can be estimated bout 2 percent, after that the instability becomes less with continuous increase in fines content. The valuable result is that the threshold value is not dependent on the specimen preparation method or initial texture of specimens. 
Mohsen Sabermahani, Valiollah Ghalehnovi, Hamidreza Elahi, Shaham Atashband,
Volume 12, Issue 3 (12-2018)
Abstract

Introduction
Jet-grouting is a soil improvement technique which was originated in Japan. Jet-grouting method consist of disaggregation of soil or weak rock and its mixing with, and partial replacement by, a cement agent; the disaggregation is achieved by means of a high energy jet of a fluid which can be the cement agent itself. Jet-grouting techniques can be grouped into three main systems, which are named single, double and triple fluid, depending on the number of fluids injected into the subsoil, namely, grout (usually water–cement mixture), air and grout, and water plus air and grout. In the beginning, jet grouting was mostly viewed as a means of improving the subsoil properties for the foundations of large structures. Nowadays, its application are diversified for use in foundations, excavations, tunneling, water barriers and underpinning. This paper studies foundation improvement by jet-grouting in one of Iran northern cities and seeks the optimum design parameters for jet-grout columns in saturated and unsaturated sand. Results of cement grouting as one-fluid jet-grouting method together with site geotechnical characteristics are presented. Diameters of jet-grouted columns, uni-axial strength of soil-cement cores and core recovery index are surveyed as the most important parameters for performance assessment of improved foundation and the primary design is modified and the project completed based on the results.
Material and methods
Design parameter of jet-grout columns were assumed according to guidelines and previous expertise as followsed: single-fluid jet-grout method with 450 bar injection pressure and rod withdrawal speed of 0.5 cm/sec with a grout density of 1600 gr/cm3. Monitor rotation speed was set to 30 rpm. Soil strata consists of a 5 meter sand with some gravels followed by a 7 meter clayey silt with the average SPT numbers of 30 and 7, respectively. To investigate the effectiveness of design parameters, jet-grout columns head were uncovered by excavating its nearby soil and columns diameter were measured. Several core samples were prepared from columns with a L/D ratio of 2 and an average diameter of 74 mm by means of a triple tube core barrel after 28 days of columns installation. The volume of core samples were calculated by multiplying its length to its average cross section (calculated from the average diameter of cores) and their unit weight were obtained by dividing its weight to its volume. Uniaxial compression test conducted in the deformation-control mode with the strain rate of 1 percent on all samples. Core samples were tested in different ages from 34 to 85 days and uniaxial compression strength (UCS) of samples were corrected by age correction factor according to soil type suggested by Sližytė et al.
Results and discussion
It is observed that the average diameter of columns that are constructed in unsaturated sand with design parameters mentioned in material and methods section, is one meter and the average diameter of columns that are constructed in saturated sand with the same density as unsaturated sand is 0.8 meter. This could be due to the dissipation of fluid jet energy under the water.
The modified obtained values from uniaxial compression test show that the strength of samples varies from 28 to 90 kg/cm2. By omitting the lower, an upper 5 precent of the data as irrelevant data, the average UCS of the remaining part is equal to 57 kg/cm2. By applying a geotechnical safety factor of 2.5 to the modified a filtered UCS values, a UCS of 40 kg/cm2 is obtained as the structural strength of get-grout column.
Conclusion
-It is observed that utilizing one-fluid jet-grout method with 450 bar injection pressure in saturated silty sand with mean SPT number 30, rod withdrawal speed of 0.5 cm/sec and grout density of 1600 gr/cm3 will result in 80 cm diameter jet-grout columns, while the same parameters will result in a 100 cm column in unsaturated sand which can be due to fluid jet energy dissipation under water.
-Considering the common design parameter for jet-grout columns in Iran, which are the same as the design parameters discussed in this paper, the UCS of get-grout columns in near shore silty sand with a safety factor of 2.5 is about 40 kg/cm2
./files/site1/files/123/6Extended_Abstract.pdf
Hadi Bahadori, Roohollah Farzalizadeh,
Volume 12, Issue 3 (12-2018)
Abstract

Introduction
When saturated sandy soils are subjected to seismic loadings, the pore water pressure gradually increases until liquefaction happens and settlement occurs during and after an earthquake. The mentioned problem is attributed to rearrangement of grains and redistribution of voids within the soils. Over the years many methods have been presented to increase liquefaction resistance. However, the main methods utilized in liquefaction mitigation are classified as densification, solidification, drainage and reinforcement techniques. Utilizing scrap tires in soils is a kind of soil reinforcement which has a wide range of application.
Waste material expulsion is one of the environmental problems each country faces. Accumulation of non-degradable polymeric materials in landfills has serious environmental consequences. Efforts to find new ways of soil reinforcement have drawn the attention of researchers towards the use of new recycled materials like scrap tires derivatives. Derivatives of scrap tires have different applications in civil engineering such as reinforcing soft soil, as a drainage layer in landfills and as filler materials.
Material and methods
In this paper a series of 1g shaking table tests were performed to investigate on the effect of tire powders-sand mixture in reducing liquefaction potential, settlements after earthquake and pore water generation. Shaking table is made of Plexiglas with inner dimensions of 200×50×70 cm. At bottom of the container a void chamber is made by using a number 200 sieve so that the saturation process could be done gradually and uniformly. A plastic plate was rigidly fixed at the center of container to separate reinforced and unreinforced samples from each other and waterproofing carefully. Therefore two models (reinforced and unreinforced) can be tested at once with the same input acceleration. An absorbing layer of foam with 2 cm thickness was employed to decrease the effect of boundary conditions in order to avoid a direct confrontation model with a rigid container. Firoozkuh No. 161 sand and tire powders were used for the mixture in reinforced side, and pure sand in unreinforced side. In this study 4 mixture ratio (TC=5%, 10%, 15% and 20%) were done. Both of unreinforced (pure sand) and reinforced (tire powders-sand mixture) models were prepared by wet tamping method, in which soil is mixed with 5% water. Each model was prepared in six layers. The required weight for each layer was considered based on the desired density (relative density is zero) and exact volume of the layer. Each portion was placed into the model container and then tamped to reach desired level. Carbon dioxide (CO2) was allowed to pass through the specimen at a low pressure in order to replace the air that trapped in the pores of the specimen. Then water was allowed to flow upward through the bottom of the container at low pressures in order to flush out the CO2 that cause increasing the final degree of saturation. Vibration with approximate uniform amplitude and 2 Hz frequency was applied to the container.
Results and discussion
Results indicate that acceleration within the soil tends to be increased towards the soil surface. On the other hand, after initial liquefaction (that occurred at un-reinforced models), acceleration is decreased due to the increase in excess pore water pressure. Also, it can be seen that the increase in tire powders ratio remarkably reduces the maximum excess pore-water pressure ratio. The settlement of the tire powders-reinforced models is significantly less than the unreinforced models, and with the increase of the tire powder percentage shows a very small increase of volume. The outcomes show that the value of the mean damping ratio versus the shear strain range of 0.01 is increased with the increase in tire powder content. Shear modulus is obtained from the ratio of the difference in maximum and minimum stress and strain developed in desired loop. The maximum of the shear modulus in reinforced models is more than the unreinforced models.
Conclusion
The main aim of the present paper was to investigate the influence of reinforcing a saturated sandy soil with tire powders on the soil dynamic properties and the mitigation of liquefaction potential. The following conclusions were drawn from this research.
- The increase of pore-water pressure leads to a reduction in soil shear stiffness and acceleration amplitude.
- Reinforcing sand with tire powders reduces the excess pore-water pressure ratio because of liquefaction and increases liquefaction resistance. 
- Reinforcing sand with tire powders decreases settlement caused by liquefaction.
- The damping ratio decreases at large shear strain as liquefaction occurs.
- Maximum shear modulus and mean damping ratio of reinforced soil has been increased with increasing tire powder content in the mixture../files/site1/files/123/3BahadoriFarzali.pdf
, Abbas Akrami, Ebrahim Jafari,
Volume 12, Issue 3 (12-2018)
Abstract

Introduction
Hydraulic fracturing is used in the oil industry in order to increase the index of production and processing in wells whose efficiency has been dropped due to long-term harvest or the rocks around the well are low permeable. Since the hydraulic fracturing operation is costly, it is of special importance to determine the pressure required for hydraulic fracturing and the suitable pump for this operation to the project managers.
The hydraulic fracturing technique refers to the process of initiation and extension of fractures in rocks caused by the hydraulic pressure applied by a fluid. This technique was developed by Clark (19). Haimson and Fairhorst (20) continued the research on the initiation and extension of fracture. Hubbert and Willis conducted comprehensive studies on the mechanics of hydraulic fracturing to determine the direction and condition of principal stresses using the hydraulic fracturing process. Since then, numerous studies and modellings have been conducted to investigate the factors effecting the hydraulic fracturing.
The present research is important because experimental and numerical modeling were used to calculate the hydraulic fracturing pressure for different conditions and to select the suitable pump for the operation.
These simulations are aimed to investigate the fracture pressure in Loshan sandstone to determine a relationship between the pressure needed for fracturing and the confining pressure.
Material and methods
The specimen examined in this study is the Loshan sandstone. Sandstone is a sedimentary rock which is formed in all geological periods and is mainly consisted of fine sand particles, different minerals and has various colors. This rock is mainly formed in the shallow seas, deltas, along the coasts, and in hot deserts. Moreover, materials such as clay and silicon oxide contributed to the cementation of its particles.
The rock sample of Loshan sandstone is a calcareous sandstone with a limestone-silica structure whose cement is calcareous (Figure 1). The main and secondary minerals in this rock include calcite, feldspar alkaline, quartz, and opaque minerals. The diagenesis of this rock includes sericitization, chertization, and calcification. The main shapers of this rock are shaped and semi-shaped quartzes with calcite.
The physical and mechanical properties of the specimens are presented in Table 1.
Table 1. Physical and mechanical properties of the Loshan sandstone
Effective Porosity (%) Dry unit weight (KN/m3 ) Tensile strength (MPa) Poisson’s ratio Uniaxial compressive strength (MPa) Elastic modulus (GPa)
7.5 21.60 6 0.21 54.62 12..22
 
 
Figure 1. Loshan sandstone
Results and discussion
Fracture pressures in the developed models are listed in table 2. The Fracture pressures obtained from numerical modeling had a 10% difference with the experimental modeling results.
Table 2. Experimental ant numerical modeling results
Fracture pressures obtained from experimental modeling Fracture pressures obtained from numerical modeling Confining pressure (MPa) Axial stress
(MPa)
Model number
14.58 13.8 2 2.26 1
15.7 15 2.5 2.5 2
11.16 9.9 0 5 3
11.39 9.9 0 7 4
Figure 2 shows the relationship between the pressure required to initiate hydraulic fracturing and confining pressure for Loshan sandstone. There was a linear relationship between fracture pressure and confining pressure. Thus, with an increase of the confining pressure, the pressure required to initiate hydraulic fracturing increased. The relationship between the fracture pressure and the confining pressure for Loshan sandstone is in the form of Equation (1).
Pf = 1.7386 σ3+ 11.242                                   (1)
 
 
Figure 2. Relationship between fracture pressure and confining pressure
Conclusion
The following conclusions were drawn from this research.
1. The increase of lateral stress led to an increase in the fracture pressure.  
2. Changes in the axial stress did not significantly change the fracture pressure.
3. The results of numerical modellings were well consistent with those of the experimental modellings.
4. Unlike other studies conducted in this field, the numerical modellings in this study were performed without any initial pre-determinations for the crack-less models. Results show that in most cases, cracks initiate from the center and are extended toward both ends of the sample. The crack extension direction was parallel to the borehole axis inside the sample and perpendicular to the lateral stress. This is fully consistent with the observations in the experimental models.
./files/site1/files/123/4Extended_Abstract.pdf
Nazanin Mahbubi-Motlagh, Ahmad-Reza Mahboubi Ardakani,
Volume 12, Issue 3 (12-2018)
Abstract

Introduction
Many studies have shown that the lime stabilization method can increase the strength and hardness of cohesive soils. Increasing these parameters is dependent on several factors such as curing time, lime content, clay minerals, soil particle size and moisture content.
When lime is added to moisture clay soils, a number of reactions occur to improve soil properties: 1- short-term and 2- long-term reactions. The short-term reactions include cation exchange, flocculate and carbonation; whereas, the long-term reactions include pozzolanic reactions. Since adding lime changes clay particles structure, it can change shear strength parameters.
Using geogrids as reinforcement in soil mass creates a composite system in which the soil tolerates compressive stresses. The elements of the reinforcement are also responsible for tensile stresses and interaction the reinforcement elements and soil increases the strength and ductility. The mechanism of stress transfer is based on interaction between soil and reinforcement. Accordingly, one of the most important issues in the analysis and design of reinforced soil structures is determination of frictional resistance parameters in soil-geogrid interface (adhesion and friction angle) which is discussed in this paper.
Stability and performances of reinforced earth structures significantly depend on the shear behavior of interface soil-geogrid in different weather conditions. Factors such as rainfall, seepage of groundwater and seasonal changes influence on soil moisture content. Changes in moisture content or soil dry density change interface soil-geogrid resistance. Increasing moisture content reduces the shear strength of reinforced soil and sometimes leads to large deformation or failure of system.
In this study, clayey soil with low plasticity (CL), hydrated lime for soil stabilization and two types of geogrid with different aperture size for reinforcing were used. In order to improve the brittle behavior of lime stabilized soils and to increase ductility of the samples, in the present study, lime stabilization and geogrid reinforcement was investigated, simultaneously. The interface shear strength parameters of treated soil with different lime content-geogrid and reinforcement coefficient were determined by direct shear tests. In addition, to study the effect of moisture content on interface shear strength soil-geogrid, all samples were subjected to shear in optimum and higher moisture content because the long-term performance of reinforced cohesive soils exposed to seasonal variations is evaluated.
Material and methods
The selected soil for the study is clayey soil from south region of Tehran, Iran. According to Unified Soil Classification System (USCS), the soil was classified as CL (clay of low plasticity).
In this study, three series of specimens were prepared and tested as follows:
  • Stabilized samples with 0, 2, 4 and 6% lime for 7 days curing time
  • Reinforced samples by geogrid (with and without transverse ribs of geogrid)
  • Reinforced stabilized samples with different lime contents (0, 2, 4, 6 and 8%) by geogrid (with and without transverse ribs of geogrid) for 7 days curing times
To investigate the effects of bearing resistance provided by the transverse members of the geogrid and their contribution to the overall strength for reinforced soil sample, numerous tests were conducted with the geogrid without transverse members (all the samples had the same number of longitudinal members of the geogrid).
Direct shear tests were carried out on specimens based on ASTM D5321 at constant horizontal displacement rate of 1 mm/min.
Results and discussion
The results reveal that the shear strength of the stabilized soil increased and there are maximum values in an optimum lime content which is about 4%. Increasing lime content to an optimum lime content of clay caused the maximum changes in clay minerals because of cementitious and pozzolanic reactions and increases the strength of the clayey soil. Reduction of strength by adding lime to the soil more than the optimum content may be caused by the following reasons:
1. Stopping pozzolanic reactions because of finishing reactance during reaction
2. Making difficult the release of limewater (Ca OH 2) in the cementitious context of soil.
Until SiO2 and AL2O3 are not finished, pozzolanic reactions continue and produce cementitious product, thus the shear strength increases and improves the long-term performance of the stabilized soils.
Reinforced soil samples have higher shear strength relative to samples without reinforcement subjected to the same normal stress. This increase in shear strength is mainly attributed to the interlocking of soil particles that penetrate through geogrid apertures. In addition, geogrids restrain particles´ movement and thus increase the mobilized frictional resistance at particle contact points.
Increasing in lime content to 4% (optimum lime content in this study) has significant effect on the development of adhesion and then decreases gradually with increasing of lime content from 4 to 6%, while friction angles remain constant approximately.
Adhesion and friction angles decrease with increasing moisture content.
The results show that the reinforced stabilized specimen with 4% lime has the maximum value of reinforcement efficiency. The increase in moisture content can significantly reduce the reinforcement efficiency.
It is clearly observed that the reinforcement coefficient of reinforced stabilized sample by geogrid that has smaller aperture opening size (4Í4 mm) is higher than reinforced stabilized sample by another geogrid (10Í10 mm) in optimum and higher than optimum moisture content.
Conclusion
One hundred and twenty samples in 3 specimen categories including lime treated, reinforced and reinforced treated samples were prepared for the current study for 7 days curing time in optimum content and higher than optimum content. The main results can be concluded as:
The test results indicate that the shear strength of stabilized clayey samples increases after 7 days curing time due to pozzolanic reactions.
The results show that reinforced samples have higher shear strength relative to unreinforced samples.
Adhesion and friction angles and reinforcement efficiency decrease with increasing moisture content.
The reinforcement coefficient of reinforced stabilized sample by geogrid 1 that has smaller aperture opening size is higher than by geogrid 2. In general, interaction between particles and geogrid with smaller mesh size is stronger because of matching the size of soil particles and meshes../files/site1/files/123/8Extended_Abstract.pdf
 

Page 4 from 9     

© 2024 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb