[Home ] [Archive]   [ فارسی ]  
:: Main About Current Issue Archive Search Submit Contact ::
Main Menu
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Contact us::
Site Facilities::
Search in website

Advanced Search
Journal concessionaire
 Kharazmi University
Managing director
Seyed Mahmoud Fatemi Aghda, Professor
Ali Ghanbari, Professor
Ali Noorzad, Associate Professor
Fatemeh Torabi
ISSN: 2228-6837
:: Search published articles ::
Showing 8 results for Hamidi

Amir Hamidi, P. Yarbakhti,
Volume 6, Issue 2 (4-2013)

In this paper, a constitutive model is proposed for prediction of the shear behavior of a gravely sand cemented with different cement types. The model is based on combining stress-strain behavior of uncemented soil and cemented bonds using deformation consistency and energy equilibrium equations. Cement content and cement type are considered in a model as two main parameters. Based on the proposed method, the behavior of cemented soil with different cement types is predicted for conventional triaxial test condition. Porepressure developed during undrained loading besides volumetric strains in drained condition are also modeled according to this framework. Comparison of model results with experimental data indicates its reasonable accuracy.
Ali Attarzadeh, Ali Ghanbari, Amir Hamidi,
Volume 9, Issue 1 (6-2015)

The objective of this paper is to investigate the bearing capacity of strip foundations next to sand slope. A series of laboratory model tests has been carried out and a new correlation coefficient to estimate the bearing capacity of shallow foundations near slopes is presented. The sand layers were prepared in a steel test tank with inside dimensions 500 ´ 200´ 250 mm. After vertical loading, the applied load and displacement of foundation were recorded and stress-settlement curve is drawn. Finally, the load at which the shear failure of the soil occurs is recorded as ultimate bearing capacity of foundation. The test sand used in this study was Babolsar sand with relative density of 50%. The relative performance of different distance of foundation from the edge of slope and inclination angle of slope are compared using same quantity of soil properties in each test. The results indicate that with increasing distance from the edge of the slope, bearing capacity increases linearly. Also with increasing slope angle, the bearing capacity has declined linearly
Amir Hamidi, Ali Dehghan,
Volume 9, Issue 2 (9-2015)

This paper describes triaxial compression tests conducted to determine the effect of fiber inclusion on stiffness and deformation characteristics of sand-gravel mixtures. Tested soil was a mixture of Babolsar sand from the shores of the Caspian Sea and Karaj River gravel. Portland cement was used as the cementing agent and fibers 12mm in length and 0.023mm in diameter at 0%, 0.5% and 1.0% were added to the mixtures. Triaxial tests were performed on saturated samples in consolidated drained and undrained conditions at confining pressures of 100, 200 and 300 kPa. Deviatoric stress-axial strain, volumetric strain-axial strain, pore pressure-axial strain curves with deformation and stiffness characteristics were investigated. Tests results show that fiber addition increased peak and residual shear strength of the soil. Fiber addition resulted in an increase of the maximum positive and negative volumetric strains. In undrained condition, fiber inclusion caused increase in initial positive pore pressure and final suction. It has also been observed that fibers decreased initial tangent stiffness of the cemented sand-gravel mixture.
M Moradi , A Hamidi , Gh Tavakoli Mehrjardi ,
Volume 10, Issue 4 (Vol. 10, No. 4 Winter 2017 2017)

Consolidated-drained triaxial compression tests were conducted to compare the stress-strain and volume change response of sands and clayey sands reinforced with discrete randomly distributed poly-propylene fibers. The influence of various test parameters such as fiber content (0.0%, 0.5% and 1.0% by weight), clay content (0%, 10% and 20% by weight), relative density (50% and 90%) and confining pressure (100 kPa, 200 kPa and 300 kPa) were investigated. It has been observed that addition of clay particles to the sands decreased the shear strength of samples. Also, increase in clay content reduced dilation and increased compressibility of the mixed soil. Addition of the fiber to both sands and clayey sands samples improved the shear strength and increased ductility and axial strain at failure point. 

A Farshi Homayuon Rooz , A Hamidi , M Puorjenabi ,
Volume 10, Issue 5 (2nd conferences on earthquake engineering (Alborz Province) 2016)

Consecutive impacts of pile driver hammer on a precast pile head for pile installation in the ground is called impact pile driving. Nowadays, the widespread use of impact pile driving in pile foundations construction is undeniable; As a result, pile driving is the most common source of construction vibrations among the sources of producing ground vibrations. The ground vibrations during pile driving is the most important factor of limiting the use of this method. Thus, to avoid structural damages, acceptable prediction of ground vibration before any project implementation is necessary. For this purpose, numerical modeling is undoubtedly the most accurate, economical and fastest way; but up to now, correct modeling of pile installation process has been the main problem in numerical modeling of pile driving. This study aims to achieve better match of ground vibrations with field results compared to the previous numerical results in terms of peak particle velocity by modeling impact pile driving operation through ABAQUS finite element software from ground surface to a desired depth without considering previous researchers assumptions and considering the details of practical works.

Mr Vahid Yousefpour, Mr Amir Hamidi, Mr Ali Ghanbari,
Volume 13, Issue 5 (English article specials 2020)

Sandy soils usually contain different amounts of fines like silt and clay, causing some changes to their shear strength and dilation characteristics. Bolton [1] conducted  some experiments on the different sands and suggested a relation between the parameters of the soil shear strength. In this paper, some experiments were performed on fine contained sand and the extended Bolton's relation was has been proposed. In this paper, shear strength and dilation behavior of a pure sand mixed with different amounts of silt or clay fines were studied using direct shear test device (100*100*30 mm), and a total of 96 tests were carried out. The samples were prepared separately using clay and silt contents of 0, 10, 20 and 30% in different relative densities of 70, 80, 90 and 100%. They were tested under three surcharge pressures of 90, 120 and 150 kPa, under particle crushing threshold. Variations in shear strength, maximum friction angle, critical state friction angle and cohesion, as well as dilation angle were investigated by increasing in the mentioned amounts. The results demonstrate that shear strength, dilation angle, maximum friction angle decreased by clay content increase, however, they increase with increase in silt content. In addition, a new form of the Bolton's relation for fine contained sandy soils was presented.
Mr. Seyed Ali Ghaffari, Prof. Amir Hamidi, Dr. Gholamhossein Tavakoli Mehrjardi,
Volume 14, Issue 5 ( English articles 2021)

This paper investigates response of triangular shell strip footings situated on the sandy slope. A series of reduced-scale plate load tests were conducted to cover different parameters including three shell footing types with different apex angles in addition to a flat footing, four different distances for strip footings from the crest of the slope namely “edge distance” and reinforcement status (unreinforced and geotextile-reinforced statuses). Bearing capacity of shell footings adjacent to crest of the slope, bearing capacity ratio, shell efficiency factor, influence of apex angle on settlement of footings and the mechanism of slope failure are discussed and evaluated. Also, empirical equations for determination of the maximum bearing capacity of triangular shell strip footings are suggested. As a whole, it has been observed that decrease of shell’s apex angle as good as increase of edge distance could significantly improve the bearing capacity. However, as the edge distance increases, the effect of apex angle on the bearing capacity got decreased. Also, it was found out that the beneficial effect of reinforcement on the bearing capacity decreased with increase of the edge distance. Furthermore, the efficiency of shell footings on bearing capacity was attenuated in reinforced slopes compared to the unreinforced status.
Prof. Amir Hamidi, Mr. Mahdi Sobhani, Ms. Farzaneh Rasouli, Ms. Marjan Sadrjamali,
Volume 16, Issue 1 (10-2022)

The goal of this study was improvement of sandy soil using a combination of polystyrene foam container waste and Portland cement. For this purpose, Babolsar sand was used as the base soil. Strips of disposable polystyrene foam container waste in “chips” of 50 ´ 5 mm and 50 ´ 10 mm were added to the soil at 0.0%, 0.1%, 0.2% and 0.3% by weight along with 3% Portland cement at a relative density of 70%. All samples were cured for 7 days under saturated conditions and then tested using a large-scale direct shear apparatus. The results showed that, in both cemented and uncemented samples, the addition of foam chips increased the cohesion and internal friction angles, which increased the shear strength of the soil. At higher percentages and using larger-sized foam chips, the shear strength increased even more. In uncemented samples, the stiffness did not change with the addition of foam chips, yet the final dilation of the samples decreased. In cemented samples, both the stiffness and softening behavior after the peak strength point decreased. The final dilation of the cemented samples increased at higher foam chip contents and for the larger sized chips. The results of numerical analysis showed that the use of foam chips increased the safety factor of a slope improved in this manner. It also was found that the foam chips with a lower length-to-width ratio had a greater effect on increasing the safety factor of the tested slopes.

Page 1 from 1     

نشریه زمین شناسی مهندسی Journal of Engineering Geology
Persian site map - English site map - Created in 0.09 seconds with 34 queries by YEKTAWEB 4610