Search published articles

Showing 11 results for ghobadi

M Haedari, Mh Ghobadi, M Torabi Kaveh,
Volume 5, Issue 2 (4-2012)

In the karstic areas, detailed studies of phenomena such as seepage of water from hydraulic structures and land subsidence in the residential and quarry areas  is of  higher importance. In this study, the dissolution rate constant of gypsite samples of Gachsaran Formation, obtained from the Chamshir dam reservoir, were measured equal to 0.24×10-3 cm/sec. Then, the changes of amounts of joint apertures using theoretical and experimental (by changes of joint water flowing and direct measurement) methods were calculated. The results showed that the predicted aperture for joints calculated through theoretical method is less consistent with the measured value of the changes of joint water flowing while the value measured by direct method (measured using a caliper) compliance is higher. Also based on research findings, if gypsites of the dam reservoir are exposed to the water flow, the amount of aperture of a joint with 0.5 cm initial opening will increase to 10 cm after about 278 days. This increase in joint aperture compared with the useful life of the dam draws for special attention to water tightening of dam reservoir.
M. H. Ghobadi, A Ghorbani, H Mohseni, Ali Uromeiea,
Volume 8, Issue 4 (3-2015)

 Knowing the engineering geological characteristics of carbonate formations is necessary for database. In this research, using petrological study and mechanical tests on 5 types of Ilam-Sarvak formations limestones in Khorramabad city, their engineering geological characteristics were determined and the relationship between physical and mechanical properties have been analyzed. IBM SPSS Statistics (version 19.0) software was used to determine the required relations. The relations have high correlations. Based on the studies on this of thin sections, rocks are characterszed as biomicrite. Limestones of Ilam-Sarvak formations have high hardening and low porosity. These rocks are in medium to high density, very resistant durability index, medium to high UCS and high point load strength category. The rocks are also impermeable. Based on the UCS, modulus ratio of the intact rock, the limestones are CM and CL. According to solubility test, the solution velocity constant was 1.39×10-6 m/s.
Davood Fereidooni, Mohammad Hossein Ghobadi,
Volume 9, Issue 2 (9-2015)

In order to assess mineralogical composition influence on durability and strength of rocks, four samples of hornfelsic rocks were selected from southern and western parts of the city of Hamedan, west of Iran. These rock samples were subjected to mineralogical, physical and mechanical tests in the laboratory. Also, they were evaluated in 15 cycles of slake-durability testing in different pH of sulfuric acid solutions and XRD analysis. Based on the results, the type and amount of minerals, their density and hardness had an influence on the uniaxial compressive strength and the slake durability index of tested rocks. That means, presence of non-dissolved minerals such as graphite in studied rocks, decreases Unconfined Compressing Strength (UCS) but increases the slake durability index. The results of slake-durability test indicated that weight loss of the samples at initial cycles was found to be higher than the end cycles. Also, in these samples, initial minerals in the fresh samples were not exchanged by secondary minerals such as clay minerals. Therefore Hamedan hornfelsic rocks are approximately resistant when were put under accelerated chemical weathering and degradation in the laboratory and natural chemical weathering.
Mh Ghobadi, R Babazadeh,
Volume 10, Issue 1 (Vol. 10, No. 1 Spring 2016 2016)

Strength and durability of sandstones and their influences from natural conditions, are the most important factors which should be considered as engineering materials. In this study, the effect of freeze-thaw and salt crystallization phenomena on strength and durability of upper red formation sandstones collected from southern part of Qazvin province was investigated. Nine specimens of sandstones (specified by A, B, C, CG, S, S1, Tr, Min and Sh) were collected from different part of studied area, then their physical and mechanical characteristics were determined. In order to assessing the effect of freeze-thaw on physical and mechanical characteristics of sandstones, 60 cycles of freeze-thaw test was performed. Also in order to investigate the effect of salt crystallization on strength of studied sandstone, sodium sulphate crystallization test (100% weight solution of Na2SO4) was carried out in 20 cycles. Physical and mechanical characteristics of sandstones such as point load index, Brazilian tensile strength, wave velocity (Vp) and weight loss were computed after different cycles. To evaluate the effect of freeze-thaw and salt crystallization phenomena on durability of sandstones, slake durability test was conducted on specimens subjected to mentioned processes and changes occurred in slake durability index in 15 cycles were investigated. Based on results obtained from current study, it could be concluded that in comparison to freeze-thaw, salt crystallization can considerably reduce the strength and durability of sandstones and deteriorate them. Also it was found that index tests such as point load index, Brazilian tensile strength, wave velocity (Vp) and weight loss can predict the behavior of sandstones in different cycles of freeze-thaw and salt crystallization tests.
Mh Ghobadi, M Kapelehe ,
Volume 10, Issue 4 (Vol. 10, No. 4 Winter 2017 2017)

Durability is a significant parameter in engineering geology and it shows the extent of the degradability of rocks as the result of mechanical and chemical breakdowns. This phenomenon is closely linked to the composition, porosity and texture of rocks. To understand the relationship between the chemical composition of rocks and their durability the mineralogical properties of the rocks along with durability tests under both acidic and alkaline pH environments were determined. Five samples of limestone and three samples of marl were analyzed. The results revealed that rocks containing high levels of CaCo3 were affected in the acidic conditions while rocks containing high levels of SiO2 were not affected by variance in the pH of the environment. These second groups of rocks were more dependent on the texture of their constituent minerals.
Mohammad Hosein Ghobadi, Seyed Hosein Jalali, Bahman Saedi, Noshin Pirouzinajad,
Volume 11, Issue 1 (Vol. 11, No. 1 Spring 2017 2017)

./files/site1/files/5Extended_Abstract.pdf Extended Abstract
 (Paper pages 91-114)
Due to possibility of occurrence in various natural environments and the variety of natural and artificial factors that affect landslides, landslide has special importance in natural hazards. Depending on the landform, several factors can cause or accelerate the landslide. According to previous researches, Human activities, land morphology, geological setting, slope, aspect, climate conditions, proximity to some watershed features such as rivers and faults are the most important parameters. Landslides occur frequently each year and they can cause heavy losses which compensating some of them requires a lot of money and time.
Assessing landslide related hazards with only limited background information and data is a constant challenge for engineers, geologists, planners, landowners, developers, insurance companies, and government entities.
The landslide occurrence in terms of time and place are not easily predictable, for this reason, Landslide Hazard Zonation (LHZ) or Landslide Susceptibility Zonation (LSZ) maps are used to predict the happening of landslides. A landslide susceptibility map depicts areas likely to have landslides in the future by correlating some of the principal factors that contribute to landslides with the past distribution of slope failures. These maps are basic tools for land-use planning, especially in mountain areas. Landslide susceptibility mapping relies on a rather complex knowledge of slope movements and their controlling factors. The reliability of landslide susceptibility maps mostly depends on the amount and quality of available data, the working scale and the selection of the appropriate methodology of analysis and modeling.
Such maps are obtained by dividing of a region into near-homogeneous domains and weighting them according to the degree of possible hazard of a landslide. There are two ways to do landslide hazard zonation: (i) a qualitative approach that is based on expert knowledge of the target area and portrays susceptibility zoning in descriptive terms; and, (ii) a quantitative approach based on statistical algorithms. In the present study of landslide susceptibility zonation, bivariate statistical methods (information value, density area, LNRF, frequency ratio) were used. In bivariate statistical analysis, each factor map is combined with the landslide distribution map and weighting values based on landslide densities are calculated for each parameter class.
Materials and Methods
The best method for studying landslides, which has long been of interest to researchers, is hazard zonation. In this method due to the affecting factors in landslide occurrence, the study area is classified into areas with low to very high risk. Such zonation could be of great help in regional planning. Different methods have been developed for this purpose. In this research four bivariate statistical methods namely information value, density area, LNRF, and frequency ratio are used to investigate the hazard zonation in Poshtdarband region, Kermanshah province. The study began with the preparation of a landslide inventory map. The instability factors used in this study included geology, land use, normalized difference moisture index (NDMI), slope gradient, aspect, distance from faults, distance from surface water, distance from roads, profile curvature and plan curvature. Landslide area ratio was calculated in classes of effective factors maps and weighted by four bivariate statistical methods. In addition, landslide hazard zonation maps were obtained from algebraic sum of weighted maps with regard to breakpoints of frequency curve. Finally, by using density ratio (Dr) Index through all four methods hazard classes were compared and with the help of quality sum (Qs) and precision (P) indexes these four methods were compared and evaluated.
Results and Discussion
If the landslide susceptibility analyses are performed effectively, they can help engineers, contractors, land use planners, etc. minimize landslide. In this study, bivariate statistical methods were applied to generate landslide susceptibility maps using the instability factors. The bivariate approach computes the frequency of landslides with respect to each input factor separately, and the final susceptibility map is a simple combination of all the factors irrespective of their relative significance in causing landslides in a particular region.
In table 1 subclasses of instability factors which had the highest value in different methods, are summarized.
The density ratio indexes (Dr), quality sum indices (Qs) and precision indices (P) were used to compare the methods. By overlaying the landslide inventory map of the study area and landslide hazard zonation maps, quality sum (Qs) and precision (P) indices introduce a suitable model for the studied region, and density ratio index (Dr) introduces division precision among the zones or hazard classes in each zonation model.
Table1. subclasses of instability factors in different methods which had the
highest value
            factor methods aspect Slope distance from surface water land use plan curvature profile curvature distance from fault distance from the roads NDMI
information value N, NE >40 >1000 forest concave concave <500 >1000 -0.17_ -0.408
density area N, NE >40 >1000 forest concave concave <500 >1000 -0.17_ -0.408
LNRF SW, S 10-20 >1000 pasture Convex convex <500 >1000 -0.17_ -0.408
frequency ratio N, NE >40 >1000 forest concave concave <500 >1000 -0.17_ -0.408
The density ratio for information value method in the very high hazard class is accounted 1.700495. These values for density area, frequency ratio, and LNRF methods are, 3.407827, 3.402257, and 1.694628 respectively.
Method precision (P) values for information value, density area, frequency ratio, and LNRF methods are 0.160826, 0.241024, 0.240672 and 0.16942 respectively.
  • Frequency ratio, density area and information value methods showed that forest land use, slope and slope shape factors have the highest impacts on a landslide occurrence.
  • The LNRF method showed that geology factors, pasture land use and distance from surface water had the greatest role in landslide making.
  • For frequency ratio, information value, and density area methods, the effective factors in landslide are the same, however through the LNRF method, the three factors which have the greatest impact on landslide happening, are generally different from the three other methods.
  • The density ratio values show that density area and frequency ratio methods respectively have more accuracy and applicability within all used methods for separating hazard classes in the study area.
  • The quality sum (Qs) results indicate that although there are minor differences, the frequency ratio compared to the density area method was more accurate and more applicable for separating landslide hazard in the Poshtdarband region.
  • The calculated results of P index indicated that among the used methods, the density area method with a nuance of the frequency ratio method is the most suitable method for the study area.

Mohammad Hosein Ghobadi, Paria Behzadtabar,
Volume 11, Issue 3 (Vol. 11 No. 3 Autumn 2017 2018)

Rock anisotropy plays an important role in engineering behavior of rocks. Slates are anisotropic rocks which have long been used for gable roof, floor tiles, borrow materials, and other purposes. The slates studied in this research are calcareous and have a porphyro-lepidoblastic texture. To determine the role of the anisotropy on the tensile strength and fracture pattern, two variables including ψ (the core axis angle to foliation) and β (the angle between the axis of loading and foliation) in the Brazilian tests were used. The angles were selected at 15° intervals. Thus, for both ψ and β, seven angles of 0˚, 15˚, 30˚, 45˚, 60˚, 75˚, and 90˚ were selected (i.e., there are 43 possible modes). In order to name and examine the failure pattern, 11 models were proposed. The average value of the failure strength for the three stations varies from 3.21 MPa to 20.94 MPa. Based on the obtained results, there is a direct relation between the average tensile strength and density. A comparison between Brazilian test data under dry and saturation conditions shows that the saturated Brazilian tensile strength is 30.8% less than the dry Brazilian tensile strength. Moreover, the changes in fracture length with the changes in ψ and β indicate an inverse relation. Eventually, the average of tensile strength (σt) and strength anisotropy index (Ia) demonstrates that the influence of orientation angle (ψ) is much larger than that of foliation-loading angle (β).
Mahnaz Firuzi, Mohammad Hossein Ghobadi, Ali Noorzad, Ehsan Dadashi3,
Volume 13, Issue 5 (English article specials 2019)

Slope stability could be a major concern during the construction of infrastructures. This study is focused to analyze the slope stability of Manjil landslide that was located 41+400 to 42+200 km along Qazvin-Rasht freeway, Iran. The Manjil landslide, which had 168 m long and approximately 214 m wide, was occurred due to inappropriate cutting in June 2013 and led to destructive and closure of freeway. Slope stability analysis was carried out using a finite element shear strength reduction method (FE-SRM). The PHASE2D program was utilized in order to model the slope cutting and stability of landslide. Slope angle was flatted with 3H:2V geometry and stabilized with piling. The results indicated safety factors of 1.95 and 1.17 in the static and pseudo-static states, respectively, while the maximum bending moment with single pile (SP) in the pseudo-static state was 5.69 MN. Maximum bending moment of the pile around the slip surface was significantly large and more than the bending moment capacity of the pile. Due to the large bending moment on the pile, pile-to-pile cap connections (two pile group: 2PG) should be designed at the toe of the slope. The obtained results showed reduction of this parameter to 2.48 MN. Thus, it can be concluded that 2PG is a suitable stabilization method for the Manjil landslide.
Mohammad Hossein Ghobadi, Mehrdad Amiri, Farhad Aliani,
Volume 14, Issue 1 (5-2020)

Because of the diversity in petrography, peridotites have variable physical and mechanical properties. For this reason, knowledge of resistance properties and their deformation will help with the prediction of engineering behavior of these rocks. Due to the large spread of igneous rocks, especially peridotite, in Zagros, northeastern and central Iran, special attention has been paid to their petrographic, physical and mechanical characteristics. The construction of the structure within or on the peridotites and the choice for the purpose of the stone borrow depends on the recognition of its engineering geology characteristics. In this paper, in addition to the field and laboratory study, the geological characteristics of peridotite engineering has been investigated.                                    
Material and methods                    
In order to study the geological characteristics of the peridotites of Harsin region, 15 suitable blocks were selected and transferred to the laboratory. Accordingly, from collected rock samples, 150 cylindrical cores of diameter 54 mm were prepared and physical and mechanical tests were performed according to (ISRM, 2007) and (ASTM, 2001) guidelines. In this research, after sampling of the study area and preparing the core for the lithological characteristics of the samples by providing thin sections of them with polarizing microscopy was studied.
Results and discussion
By considering the results of laboratory tests and analysis from Harsin peridotites in Kermanshah province, we can acclaim that with increasing the percentage of minerals in olivine and pyroxene in rock, the strength was decreased and the levels weaknesses, which is due to the weak structure of the mineral-olivine and pyroxene. According to the physical properties test and Anon classification, the porosity percentage in porosity percentage is low and as a result the amount of water absorption index is low. Based on the Gamble classification, all peridotites are very resistant to durability and based on the Franklin and Chandra classification, all samples are extremely resistant. The results of this study showed that the single axial compressive strength, elasticity modulus, point load index and tensile strength were decreased with an increase in humidity content of peridotite samples. This is due to the fact that with the increase of humidity pore pressure of water increases. According to the Anon classification, the peridotites are very high in terms of the length of the longitudinal passage through the rock. The highest compliance between the Brazilian Tensile strength test (BTS) and Schmidt hammer (SHV) was achieved in the dry condition and the determination coefficient (R2) equals to 0.95 was obtained. Also there is an acceptable relation between the Brazilian Tensile Strength Test (BTS) and the dry volume unit weight (γd) with the determination coefficient (R2) of 0.93. In addition, there is an admissible relationship between durability test and single-axial compressive strength, with a coefficient determination (R2) of 0.94. Regarding the obtained regressions in this study, the physical and mechanical properties show good agreement and most of the equations have an acceptable coefficient determination.
Mahnaz Firuzi , Mohammadhosen Ghobadi , Ali Noorzad, Ali Asghar Sepahi,
Volume 15, Issue 1 (Spring 2021 2021)

Landslides have an effective role in the destruction of freeways and railroads, which have been caused to many human and financial losses. Understanding this phenomenon and its effective factors can be important in planning for development projects and away from landslide prone areas. Based on extensive field in the Qazvin-Rasht freeway that the authors carried out in various researches in 2014-2017, it was found that the freeway was threatened by the type of instabilities due to variety of lithologies  and tectonic structures exploitation phase and needs to be stabilized. The purpose of this study is to determine of the distribution of landslides in different types of lithologicalunits of the Qazvin-Rasht freewaythat shows the role of geology and differences in geotechnical characteristics and tectonic structures in the creation and distribution of landslides on the road.The role of geology on the difference in geotechnical properties and tectonic structures in the creation and distribution in the road. Geological engineering properties and appropriate stabilization methods is the other goals of this study.
Material and Methods
In the study, the locations and the type of landslides are distinguished and the information were plotted on geological map. Then by the ARC GIS 10.2 program, and the use of area density method, the percentage of landslide events in each geological formation was identified. In order to study the role of lithology (type of rock, texture, mineralogy, weathering, alteration and erosion), sampling were carried out from rocks of Karaj formation, Shemshak formation, Cretaceous orbitalolina limestone and Fajan conglomerate. Geotechnical characteristics of the samples were determined by performing laboratory tests such as dry weight, porosity, uni-axial compressive strength according to ISRM standard (1979). For determining the role of tectonic structures (number of joints, dip and dip direction, length (m), spacing (cm), filling percentage, opening (mm), roughness, weathering, water, friction angle) were performed. Then, the results obtained from relative density and frequency were matched with the geological, geotechnical characteristics and tectonic structures of each formation.
In order to separate different types of landslides on various kinds of rocks, area density and frequencyof  landslides were determined by Eqs 1 and 2. Graph of frequency and area density are presented in Fig. 6 and Table 2, respectively. As can be seen in this figure and table, in Karaj formation, the percentage of rock fall, toppling, avalanche, scree slope and combined slip are the highest. In the rocks belonging to the Shemshak formation, the susceptibility of the debris flow and landslides has been increased. In Fajan conglomerates and limestones of the Ziarat and Cretaceous formations, the rockfalls is more formed.
where LI: area density, AL:  area of landslides in each lithological unit, AT: area of landslides in total area.
where LF: frequency of landslide, NL:  number of landslides in each lithological unit, NT: number of landslides in total area.
Result showed that despite significant heterogeneity in lithology, geotechnics, engineering geology and tectonic structures, there are similarities between the types and distribution of landslides. Four of the identified landslides consist of rock fall, toppling, avalanche in the resistant and medium strength rocks such as andesite, trachy-andesite and basalts of Karaj formation, Cretaceous orbitalolina limestone and Fajan conglomerate with regard to the dominant direction of the joints in relation to the slope, the shear strength of the joints and their weathering, falling and scree slope in thesiliceous zone and composite landslide in the argilite-alounite zone due to the high alteration and groundwater level and water retention by the presence of clay minerals, landslide in the sequence of loose and resistant rocks, debris flow and landslides in the soils of Shemshak formation due to the lepidoblastic texture of the slate and their high erosion potential due to the weather climate along the Manjil-Rudbar freeway../files/site1/files/151/4.pdf
Mohammad Hossein Keyghobadi, Adel Asakereh, Behzad Kalantari, Masoud Dehghani,
Volume 15, Issue 1 (Spring 2021 2021)

The ring footings are very important and sensitive due to widespread use in various industries such as oil and gas; so finding some ways for improving the behavior of these types of footings can be very valuable. One of these ways, which is very affordable and also can be help in environmental protection, is the use of granulated rubber that made from disposable materials like scrape tires, as the soil reinforcement. In the present study, the behavior of ring footings with outer constant diameter of 300 mm and variable inner diameters (90, 120 and 150 mm with inner to outer diameter ratio of 0.3, 0.4 and 0.5) placed on unreinforced sand bed and also granulated rubber reinforced bed, has been investigated by field test. The effects of important parameters like inner to outer diameter ratio of ring footing and thickness of rubber-soil mixture on the behavior of ring footing in terms of bearing capacity, settlement and inside vertical stresses of footing bed have been studied and the optimum values mentioned parameters have been determined.
Material and methods
In all tests, a sandy soil was used to fill the test trench which was excavated in the natural bed of the earth with a length and width of 2000 mm and a height of 990 mm. It should be noted that the type of this soil is well-graded sand (SW) according to the Unified Classification System (ASTM D 2487-11). This sand had medium grain size, D50, of 2.35 mm, moisture content of 5.4% and friction angle of 41.7. The granulated rubber particles with dimensions between 2-20 mm, a mean particle size, D50, of 14 mm and a specific gravity, Gs, of 1.15, have been used in all tests for using in rubber-soil mixture layer.
The loading system consists of several parts such as loading frame for providing reaction force, hydraulic jack, load cell, load transfer system (including loading shaft which was located below Load cell and footing cap which was located under the loading shaft) and rigid steel loading plates with different inner to outer diameter ratios (d/D=0.3, 0.4 and 0.5 and constant outer diameter of 300 mm). Some devices like load cell, LVDT, pressure cell, data logger and unit control were applied to collect the data and control the system. Both soil and rubber-soil mixture layers were compacted by vibrating plate compactor to gain their maximum densities. After preparing the tests, the static load was applied on the system at a rate of 1 kPa per second until 1000 kPa or until backfill failure.
Results and discussion
The results of tests on both unreinforced and rubber reinforced beds indicated that the ring footing with inner to outer diameter ratio (d/D) of 0.4 had the maximum bearing capacity in all settlement levels. This behavior can be related to the arching phenomenon within the internal spaces of ring footing with optimum inner to outer diameter ratio. In fact, when the ring footing with optimum inner to outer diameter ratio is subjected to a certain level of loading, the soil inside the ring seems to be compacted due to interface effect of the two sides of the ring. However, by increasing the inner to outer diameter ratio more than its optimum value, the ring behaves like two independent strip footings without any interface effect and therefore the bearing capacity decreases.
The results of tests showed that the vertical inside stresses in different depths of footing bed (both unreinforced and rubber reinforced beds) decrease with increasing d/D ratio. This stress reduction process can be due to the transfer of stress concentration from the points close to the center of the ring to the outer point because of turning from the ring mode with interface effect to the two independent strip footings that mentioned earlier.
The results of rubber reinforced cases illustrated that, regardless of the footing settlement level and also irrespective of d/D ratio, the bearing capacity of ring footing increases with increasing the thickness of rubber-soil mixture layer (hrs) up to the value equals 0.5 times the outer diameter of ring footing and further increase in this thickness more than mentioned optimum value (hrs/D=0.5) can decrease the bearing capacity. Even in some cases of reinforced base (hrs/D=1), the bearing capacity can be reduced to the value less than that of unreinforced cases. It can be due to high compressibility of rubber reinforced layers with higher thicknesses than optimum value.
It should be mentioned that the rubber reinforced layer can reduce the vertical inside stresses compared to unreinforced cases. It can be due to this fact that the rubber reinforced layer acts as a wide slab. Such that it can spread the applied loading over a wider area. Also rubber reinforced layer has high capacity of absorbing energy and therefore can decrease the vertical inside stresses.
In the present study the behavior of ring footing placed on rubber reinforced bed have been investigated by field test. The effect of different parameters such as inner to outer diameter ratio of ring footing and the thickness of rubber-soil mixture layer on the bearing capacity, settlement and vertical inside stresses of the footing bed were studied. The result indicates that:
- In both unreinforced and rubber reinforced bed, the ring footing with inner to outer diameter ratio (d/D) of 0.4 had the maximum bearing capacity, regardless of settlement level.
-The vertical inside stresses in different depths of footing bed decrease with increasing d/D ratio.
-The bearing capacity of ring footing increases with increasing the thickness of rubber-soil mixture layer (hrs) up to the optimum value equals 0.5 times the outer diameter of ring footing.
-The vertical stresses can be reduced by using rubber reinforced layer../files/site1/files/151/5.pdf

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb