Search published articles


Showing 6 results for Soil Improvement


Volume 3, Issue 1 (11-2009)
Abstract

(Paper pages 523-542) This paper presents a rigid circular footing model with specified properties and dimensions on a sandy-clay soil with Mohr-Coulomb material. This model is analyzed dynamically with finite difference 2D FLAC software under vertical component of ground excitations. Then the soil is improved with cement grouting and analyzed again. Consequently, the load-settlement curves under a circular footing, due to vertical component of ground accelerations through the underlying soil, are plotted. Also the dynamic bearing capacity of natural and soil cemented foundation is presented and discussed. The analysis results show that adding 2, 4 and 6 percent of cement, with certain conditions, cause 2.7, 4.2 and 7.0 times increase in dynamic bearing capacity, respectively, in comparison to normal soil.
Mohamad Ali Maroof, Jafar Bolouri Bazaz,
Volume 8, Issue 4 (3-2015)
Abstract

The collapsible soils are usually known as soils with open structure and weak bonding between particles. The behavior of such soils is similar to very loose soils. These types of soils, when saturated without any changes in loading or subjecting vibratory loads, experiences huge settlements. The present research deals with investigation on collapsible soils located in the North East of Mashhad. The results of laboratory and in situ tests show that collapsible soil in this region was very sensitive to the increasing of moisture content. This means that an increase in soil moisture content, significant excess settlement occurs during a short time. This indicates that the soil in this region suffers from high potential collapsibility. The huge soil settlement will lead to the stability of existing structures to be at risk. It is, therefore, necessary for the collapsible soil in the region to be improved. For soil improvement, many techniques including moisture mitigation and soil replacement or compaction may be employed. Also stabilization of soil with lime, cement or coarse aggregates are practical methods. Which The results of the present research indicate that stabilization of soil lime is the most appropriate method for increasing bearing capacity of soil and reducing structural settlement.
Mehdi Jalili, Amin Zare, Mohammad Javad Shabani,
Volume 12, Issue 4 (4-2019)
Abstract

Introduction
The design engineers usually follow a specific decision-making process for optimal selection of the type of required foundation and its design. In this state, in case the surface foundation is not appropriate for the project conditions, before making any decisions about the use of deep foundations, the proper methods for optimization of the liquefied soil should be evaluated in order to compare the advantages and disadvantages of each of them with those of deep foundation, in terms of efficiency, implementation problems, costs, and finally to select the best choice. One of the best methods of soil improvement is the use of stone columns. The rationale behind the use of stone columns is the high shear strength of materials and the provision of lateral grip by surrounding soil. Therefore, the stone column can receive the load from the structure, and transfer it to the resistant layers. In the soils with low shear resistance, the lateral constraint crated by the surrounding soils is not enough for preventing the sideway buckling of the column under which is subjected to the loads. Thus, special measures should be considered for the use of stone columns in these soils. One of these methods is the use of reinforcement shelves such as geogrid and geotextile. Investigating the previous studies, the lack of evaluation of the design parameters such as the settlement ratio of the soil improved by the reinforced stone column to the geogrid, and provision of design graphs in this regard, has been revealed. Therefore, by extension of the studies conducted by Chub Basti et al. in 2011, the design graphs were provided in this regard.
Material and methods
The PLAXIS V8 Software was used for modelling the soft soil improved by the stone column. For increasing the precision of the results, the 15-knot element was used in the current study. The fine mesh was used in the models made for the analysis of the problem. For simulation of the improved soft soil with the stone column in a single cell, the modelling was implemented in a two-dimensional environment in axial symmetry conditions. In the current study, it was assumed the rigid foundation is on the improved bed. Thus, for analysis of the simulated model, a vertical strain up to 2% of the soft soil height has been applied on the ground. Also, for simulation of the soil behavior, an appropriate model of soil and parameters proportional to the materials should be allocated to the construct geometry. The non-linear stress-strain of the soil in different levels of the problem can be simulated. The number of model parameters increases with the level of problem rupture. For precise simulation, we need the proper parameters of the materials. For modeling of soft soils and stone columns, elastic-plastic model with Mohr-Coulomb rupture criterion was used. In the current study, it was assumed the soft bed is located on a very hard layer of soil. Therefore, the vertical deformation was prevented on this horizontal boundary. Also, the horizontal deformation in two vertical edges was prevented and only deformation in vertical direction was allowed. The soft bed close to saturation was considered without the determined free water level. For models with stone columns, the element of interface between the stone column and soft soil, has been used. The reason behind using this element is that the stone column rupture is of shear form and due to this, a significant shear stress is created on the common surface between the stone column and soft soil. The percentage of the replacement area is defined as the ratio of the total area of the stone columns to the total area of the non-improved area. In the current study, the percentage of the replacement area is utilized between 10 to 30%, which is used in implementation. Also, the diameter of the stone columns is from 0.6 to 1.2, in the analyses.
Results and discussion
The results of the numerical study were compared with the existing theoretical relationships provided by Poorooshasb and Meyerhof (1997), and Pulko et al. (2011). Figure 1 shows the comparison of the replacement percentage (RP) and settlement ratio (SR) in the non-reinforced state in the current study as well as theoretical relationships proposed by the previous researchers. Based on this figure, there is a difference between the results of the current study and those of Poorooshasb and Meyerhof (1997), and Pulko et al (2011). Poorooshasb and Meyerhof (1997) calculated the settlement ratio in their proposed material with the assumption of linear elasticity of the materials without consideration for plastic settlement. Therefore, the settlement of the improved soft soil with stone column, calculated by Poorooshasb and Meyerhof, would not show the real amount. However, Pulko et al. (2011), with consideration for the elastoplastic behavior of the materials, the lateral expansion of the stone column, and the primary stress of the soil around the column, provided more realistic results that correspond closely with the present study. Also, for designing the stone column, the results of its reinforcement have been also provided in the graph presented in Figure 2. Thus, by the use of these graphs, the ratio of settlement reduction can be obtained for each distance between columns and with different percentages of alternatives../files/site1/files/124/2jalili%DA%86%DA%A9%DB%8C%D8%AF%D9%87.pdf
Ali M. Rajabi, Shima Bakhshi Ardakani,
Volume 14, Issue 4 (1-2021)
Abstract

Introduction
Improving the geotechnical characteristics of soils including superficial or deep soils has always been a challenge to geotechnical engineers. Therefore, various physical and chemical methods are used to improve different types of soils. In general, any physical, chemical, biological or combination of methods are used to change the characteristics of natural soil mass in order to achieve engineering goals which is defined in the "soil stabilization." Among different types of additives for soil stabilization, the use of pozzolans has been investigated by researchers because of their chemical compatibility with the environment and the cementation products due to chemical reactions. Todays, a lot of researches has been done on the use of natural or artificial zeolites as pozzolanic materials for the production of cement mixtures. This material, as a pozzolan, increases the speed of the pozzolanic reactions and reduces the density of cement products. However, many studies have been done to investigate the effect of zeolite and sepiolite on the resistance of cement products such as concrete, but so far, the use of these additives has been less considered for soil improvement. On the other hand, because of the compatibility of zeolite and sepiolite with the environment and their unique physiochemical properties, it is necessary to pay attention to these additives in order to improve the soil. Therefore, in this research, the effect of zeolite and sepillot additives with different percentages at different treatment times have been investigated to determine the elasticity modulus and hydraulic conductivity with focus on soil microstructure behavior.
Materials and methods
1. The properties of the soils
In this research, two types of soil including clayey sand (with 20% clay) and sandy clay (with 51% of clay) were used. The studied soils were a mixture of clay and sand of Firoozkouh (a typical type of sand located in north of Iran). Some physiochemical properties of zeolite and sepiolite are presented in Table 1.
Table 1. Physiochemical properties of zeolite and sepiolite used in this study
L.O.I. Na2O K2O MgO CaO Fe2O3 Al2O3 SiO2   Chemical component
25.11 0.02 0.01 15.73 0.01 o.61 0.3 55.3   Sepiolite (%)S
11.94 0.13 - 0.87 2.45 1.26 13.54 69.74   Zeolite (%)
2. Experiments
The uniaxial compressive strength tests were performed at 0.1 mm/min according to ASTM D2166 standard. The stabilized soil samples were compacted at percentages of 0, 5, 10, 15, 20 and 25 in cylindrical molds (38mm × 76mm) in five layers to achieve the desired density. In order to investigate the effect of curing time, the samples were placed inside sealed containers and underwent the test at instantaneous, 7, 14, and 28 days and at the desired additive percentages. To investigate the effect of additives on the soil hydraulic conductivity, clayey sand soil with additives 5, 10, 15, 20, and 25% was prepared using dry mixing method. Then, the prepared mixture was poured from a specific height into the permeability mold with a height of 8.65 cm and diameter of 5 cm. In this way, the specific dry unit weight of all samples was obtained as 1.47 g/cm3, close to the minimum specific dry unit weight. In this research, concerning the considerable effect of fine-grained soils on hydraulic conductivity, falling head test was used to determine the permeability coefficient.
In order to the morphology of the clayey sand soil without additives and stabilized with additives 15% was examined through SEM test.
Discussion and results
1. Modulus of elasticity
In this study, after uniaxial tests in different percentages and ages, the stress-strain graphs were plotted and then the elasticity modulus was calculated. The results showed that, with increasing zeolite content, the modulus of elasticity has been increased and, with increasing curing time, except for a slight decrease, after 7 days, the modulus of elasticity increased. During the initial treatment (7 days), the hardness of the sandy clay soil decreased and then increased with increasing time. In general, hardness in both soils in the high percentages of zeolite is significantly is increased.
Also, the effect of sepiolite on the modulus of elasticity has been studied. The results indicate that with the increase in the percentage of additive and lengthening the curing time, the modulus of elasticity is increased. This increase in the stabilization of both sandy clay and clayey sand soil is almost the same. In addition, in the case of sepiolite modification, the elasticity of sandy clay and clayey sand is approximately equal to 5 times in comparison to the initial value of unstabilized soil. However, in zeolite, the modulus of elasticity in clayey sand soils is almost 2 times, and sandy clay is nearly 5 times higher.
2. Permeability
To investigate the effect of additives on the soil hydraulic conductivity, clayey sand soil with additives 5, 10, 15, 20, and 25% was prepared using dry mixing method. The samples were saturated in a short period and permeability test was carried out immediately. Permeability coefficient changes were mostly influenced by physical factors. Therefore, due to the fineness of both types of additives, the hydraulic conductivity decreases with increasing additive content. The amount of reduced hydraulic conductivity in sepiolite stabilization is greater than zeolite due to the structure of the sepiolite (fiber-shaped) compared to zeolite.
 
 
3. SEM imaging
In this study, attempts were made to examine the reasons behind the obtained results more carefully through SEM imaging.

c                                     b                              a
Figure 1. SEM image of non-stabilized clayey sand soil (a) soil stabilized with zeolite 15% (b) soil stabilized with sepiolite 15% (c) during the curing time of 28 days at magnifications 10000X
Figure 1a displays the SEM image of non-stabilized clayey sand soil. As can be seen in the figure, the soil structure is clear as layered and clay scales can be seen as laminated. Figure 1b demonstrates the SEM images of clayey sand soil stabilized with zeolite 15% during the curing time of 28 days. The sample has lost its layered structure in response to stabilization with zeolite during the curing time and changed into an integrated structure. This can be due to incidence of chemical reactions such as ion exchange and pozzolanic reactions in response to adding zeolite. Figure 1c demonstrates the SEM images of clayey sand soil stabilized with sepiolite 15% during the curing time of 28 days. As shown in the figure, the sepiolite has a fibrous-shaped structure that is longitudinally twisted. Also, with  curing time increase, complex structures have emerged that could be due to the occurrence of chemical reactions.
Conclusion
This study examined the effect of zeolite and sepiolite additives on strength parameter of clayey soils. Accordingly, uniaxial compressive strength test was performed on clayey sand and sandy clay soil at percentages of 0, 5, 10, 15, 20 and 25% of zeolite and sepiolite with instantaneous curing times of 7, 14 and 28 days. Further, permeability test was conducted at different percentages on stabilized clayey sand soil. Also, to investigate the effect of these materials on soil microstructure, SEM imaging was performed at 28 days. The results show that both additives increase the elastic modulus of clayey sand and sandy clay soils. Also, the results indicate a steady increase in the stiffness of the cured soil with sepiolite during processing time. However, reducing soil hardness can be seen in stabilizing with zeolite at lower rates and lower percentages. In permeability test, hydraulic conductivity decreases with increasing additive content. The rate of permeability reduction in sepiolite is higher than zeolite. SEM images show that chemical reactions create an integrated structure that ultimately increases uniaxial compressive strength and modulus of elasticity. Also, SEM imaging depicts physical changes along chemical reaction in soil stabilized with sepiolite. Ultimately, increasing soil strength resulting from additive alongside environmentally friendliness is recommended in superficial and deep improvement of soil../files/site1/files/144/Rajabi.pdf
 
Soheil Ghareh, Kimiya Yazdani, Fatemeh Akhlaghi,
Volume 14, Issue 4 (1-2021)
Abstract

Introduction
The existence of problematic soils due to their geotechnical properties, such as low strength and stability, high compressibility, and swelling, is one of the most important issues and challenges that geotechnical and civil engineers are faced in urban environments, especially in metropolises. Various methods are used to stabilize and to improve the behavior of problematical soils such as compaction, consolidation, stone columns, jet grouting, biological procedures, and additive materials including nanomaterials. Because of their high specific surface, the use of nanoparticles is very effective to increase the shear and mechanical strength parameters of soil. Mashhad city is located on alluvial deposits of Mashhad Plain. A wide area of this city, especially the central and eastern areas where the Imam Reza holy shrine is located, has been built on weak and fine-grained deposits. Considering constructing high-rise buildings such as hotels and commercial complexes in these areas, as well as the need for restructuring the urban decay, the soil improvement will be inevitable. Given the significant application of these nanoparticles, the purpose of this study is to investigate the effects of nanoclay and nanosilica on each other and to find their optimal composition as a suitable alternative for traditional materials to improve the weak and problematic soils. This not only increases the bearing capacity and strength properties but also reduces the cost and time of project implementation.
Method and Materials
To achieve a hybrid with maximum strength and bearing capacity in executable projects, laboratory tests were performed on the soil picked up from the vicinity around Razavi holy shrine in Mashhad mixed with nanoclay and nanosilica. The type of soil is classified as CL-ML based on sieve and hydrometer tests. The nanoclay used in this research is the type of montmorillonite- K10, and the nanosilica is as a powdered shape with 99% purity.
At first, nanoclay and nanosilica were mixed independently with soil in six different weight ratios (0%, 0.1%, 0.5%, 1%, 2.5%, & 5%) and (0%, 0.1%, 0.25%, 0.5%, 0.75%, & 1%). Soil mechanical and strength properties, including compressive and shear strength, settlement, plasticity index, and swelling, were studied by standard laboratory tests on all specimens. After determining the optimum ratio of each nanoparticle, four hybrids consisting of nanosilica and nanoclay were made in four different combinations and then the effects of these four hybrids were investigated on the soil in the laboratory scale (Table 1).
Table 1. Composition of hybrids made with different percentages of nanomaterials
Nanomaterials composition Hybrid Name
5% Nanoclay + 0.25% Nanosilica 5NC + 0.25NS
5% Nanoclay  1% Nanosilica 5NC + 1NS
2.5% Nanoclay + 0.25% Nanosilica 2.5NC + 0.25NS
2.5% Nanoclay + 1% Nanosilica 2.5NC + 1NS
Conclusion
The results of the Atterberg limit test on improved and pure soil indicate that the addition of nanoclay and nanosilica and the optimized ratios of these nanoparticles hybrid to increase the soil resistance parameters did not change the soil swelling index.
Evaluation of shear strength test results showed a significant synergistic effect of these nanoparticles on increasing the shear strength parameters. The nanoparticles hybrid of 2.5% nanosilica and 1% nanosilica increased the cohesion up to 106% and also hybrids of 5% nanosilica and 1% nanosilica increased the internal friction angle of soil up to 32%.
Examination of unconfined compressive strength tests presented a 134% increase in the compressive strength of the specimen improved with 2.5% nanoclay and a 620% increase in soil improved with 1% nanosilica. The optimum hybrid compositions of 5% nanoclay and 1% nanosilica increased significantly the compressive strength of the studied soil up to 785% and reduced the settlement of the soil by 60% compared to pure soil.
  1. Laboratory studies of electron microscopy examination on ​​pure and improved soil samples with nanoparticle hybrid revealed the presence of these particles in pores of the improved soil. On the other hand, the high specific surface area of ​​the nanoparticles increased the interaction of the soil particles, and the effect of adding these nanoparticles on the refining process is observed in compressive strength increase.
As the nanoclay, nanosilica, and hybrid of nanoparticles are the results of soil processing, these particles are very effective to solve the environmental problems because of good compatibility with soil environments. In addition, low volumes of nanoclay, nanosilica, and hybrid in these nanoparticles are necessary to increase the compressive strength and decrease the settlement of soil. Therefore, using these nanoparticles at the project site reduces significantly the cost and execution time of the project.
 
 
Shaham Atashband, Mohsen Sabermahani, Hamidreza Elahi,
Volume 15, Issue 2 (9-2021)
Abstract

In coastal industrial areas, in addition to the presence of loose soil, sulfate attack on soil improvement elements, such as soil-cement, is a double problem. Generally, the use of type V cement is recommended as one of the methods to reduce the detrimental effects. Considering the limited resources of this type of cement, firstly to determin the relationship between the cement content and the strength obtained in sulfated environments is one of the important engineering question in this field and secondly, as an alternative option, the use of type II cement which is more available, is suggested to use in combination with suitable additives. The present study pursues the above two goals by making cylindrical soil-cement specimens with sand, water and Portland sulfate resistant cements. Sodium sulfate is used as the sulfate in soil and water. In the research, first of all, the relation between type V cement content and unconfined compressive strength of soil-cement is obtained at 0% to 5% sulfate concentration, which results in a cement content of 400 kg/m3 completely limited the sulfate attack effects in a sulfate concentration of 2%. Secondly, the combination of type II cement with barium chloride and hydroxide was tested. The related results show that the combination of type II cement with barium chloride and hydroxide had higher strengths, about 2.7 to 3.3 times, respectively (in 362 days), than the soil-cement containing type V cement../files/site1/files/152/%D8%A2%D8%AA%D8%B4_%D8%A8%D9%86%D8%AF.pdf
 
 

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb