Search published articles


Showing 6 results for Abaqus

, , ,
Volume 5, Issue 2 (4-2012)
Abstract

The development of large cities requires the use the underground networks for the construction of transportation infrastructures and facilities. Construction of tunnels in soft grounds induces generally soil movement, which could seriously affect the stability and integrity of existing structures. In order to reduce such movements, in particular in urban areas, contractors use more and more the tunnel boring machines (TBM) for the construction of tunnels. Hence in urban environment, Prediction of the ground movements caused by the tunnel excavation is a major engineering challenge. In this paper is used a three-dimensional numerical model and ABAQUS cod for the prediction of soil movements induced during tunnel construction in part of the line 3 of Tehran subway using EPB excavation machine. This investigation include most shield tunneling components such as face pressure, the grouting pressure, excavation machine and frictional contact with soil and shield. Observations of the results demonstrate that the maximum surface settlement in this section is 2.5 cm that is 0.5 cm more than the its allowable value. Simultaneously with surface settlements occur horizontal movements within soil mass, which have different forms in two horizontal directions, and with the expansion of depth they increasing.
P Headarian, S. M. Fatemi Aghda, Ali Noorzad,
Volume 7, Issue 2 (3-2014)
Abstract

Tunneling in complex geological and geotechnical conditions is often inevitable, especially in urban areas. The stability analysis and the assessment of ground surface settlement of a shield tunneling are of major importance in real shield tunneling projects. The objective of this research is to determine the collapse pressure of a shallow circular tunnel driven by a Tunnel Boring Machine (TBM) of the Earth Pressure Balance (EPB) type.  In this study, analytical methods and three-dimensional numerical modeling with ABAQUS software were implemented to examine the effect of face pressure on the behavior of the tunnel. The parameters were calculated using data from Karaj subway-line 2 as a case study. The analytical method used in this study is Leca-Dormiex which is based on limit analysis theory.  The method is based on a translational multiblock failure mechanism.  Also, elastic and Mohr-Coulomb constitutive model have been used for soil behavior. The results of analytical method and numerical modeling were then compared. Based on the obtained results, face pressure assessed from the analytical method of Leca-Dormiex (upper bound) is the minimum pressure that can be implemented on the face tunnel. It also indicates that with implementation of suggested pressure of analytical method, Karaj subway face tunnel is stable and consequently execution of pre-consolidation methods in this section of the tunnel does not seem to be necessary
M.a Eskandari , P Homami ,
Volume 10, Issue 5 (7-2016)
Abstract

Most of masonry buildings are vulnerable against earthquakes and need to be rehabilitated. One of the pragmatic methods for strengthening is to utilize shotcreting the masonry walls. In this paper the effects of the soil type (in view of seismic behavior) on the rehabilitation of the masonry building by shotcrete are investigated. Three types of masonry buildings are simulated by ABAQUS software and analyzed against three earthquake records to find their reporses and seismic demands. Using five types of shotcrete configuration consisted of shotcrete strips in vertical and horizontal directions for rehabilitation are studied to find the appropriate method for damage mitigation. The suitable method for rehabilitation are used to study the effects of soil type on the rehabilitated buildings. Three records of the Tabas (1979) earthquake which were recorded on different types of soils (Type I, II and III based on the Iranian seismic design regulations) are considered to analyze the sample masonry building. The results show that the shotcrete method is more effective for buildings which are relying on the softer soils and in stiff soils it is recommended to combine the shotcrete method with other rehabilitation methods which are able to strengthen the building without increasing the stiffness of the building, like utilizing post tensioning cables.


A Farshi Homayuon Rooz , A Hamidi , M Puorjenabi ,
Volume 10, Issue 5 (7-2016)
Abstract

Consecutive impacts of pile driver hammer on a precast pile head for pile installation in the ground is called impact pile driving. Nowadays, the widespread use of impact pile driving in pile foundations construction is undeniable; As a result, pile driving is the most common source of construction vibrations among the sources of producing ground vibrations. The ground vibrations during pile driving is the most important factor of limiting the use of this method. Thus, to avoid structural damages, acceptable prediction of ground vibration before any project implementation is necessary. For this purpose, numerical modeling is undoubtedly the most accurate, economical and fastest way; but up to now, correct modeling of pile installation process has been the main problem in numerical modeling of pile driving. This study aims to achieve better match of ground vibrations with field results compared to the previous numerical results in terms of peak particle velocity by modeling impact pile driving operation through ABAQUS finite element software from ground surface to a desired depth without considering previous researchers assumptions and considering the details of practical works.


, , ,
Volume 11, Issue 2 (11-2017)
Abstract

./files/site1/files/2.pdfExtended Abstract
(Paper pages175-200)
Introduction
In weak soils with low bearing capacity, the load transfer is done using piles. Therefore, by creating an interposed layer separating the pile from the raft, reactions between raft and pile head will be reduced and the load-bearing role of shallow soil will be more than contact pile situation. Normally, the pile head and shallow soil have a settlement equal to the raft. Thus, the relative settlement of pile and soil in pile head is equal to zero and at the bottom is high and the body friction mobilizes upward. In addition, a portion of load is tolerated by shallow soil and the other portion is tolerated by the pile head, which would be transferred to deeper soil layers. In noncontact state, with the formation of a hard soil layer on which the raft is located, soil mechanical parameters will be improved; while in contact state, the settlement will be decreased by reducing the amount of transferred load to the shallow soil. The transferred load to the shallow soil increases vertical and horizontal stress around piles, so bearing capacity of piles is increased.
Methodology
In this study, a parametric study has been performed concerning contact and noncontact piles using finite element software namely, ABAQUS/CAE software version 6.13.1 and the obtained results were compared (with what? The sentence is incomplete). Thus, simulations are is done for states of 0, 1, 4 and 9 piles for each of the contact and noncontact piles (total of 8 simulations). In the present research two models were taken to investigate the optimum mesh sizes, 12 models for parametric studies on parameters of piles’ length, piles’ diameter, thickness of the raft and interposed layer and one model for verification study. Models in both contact and noncontact have been considered with a one meter interposed layer. Raft width and thickness were selected 7.5 and 1.6 m, respectively. Width and depth of the soil mass used in the model were 32 and 26 m, respectively, and the distance between the bottom of the pile and the soil mass was 13 m. In all cases, the diameter of piles was 0.5 m and distance between piles were 5 and 2.5 m in 4 and 9 states, respectively. The geotechnical parameters and model dimensions used, were selected according to the Fioravante & Girettis (2010) [1]. Sand and silica-sand with the defined properties were used for the soil mass and the interposed layer, respectively. Since Drucker-Prager criteria has better ability to express the behavior of coarse-grained soils, this criterion was used in the modeling [2]. The purpose of this study is to investigate the influence of interposed layer on bearing capacity and settlement of pile. Hence, because of simplifying the process of modeling, parameters of main soil and interposed layer are mostly similar. Piles and raft are made of concrete with an elasticity modulus of 21 GPa, Poisson's ratio of 0.2 and density of 2300 kg/m3. The crack growth analysis with the compressive stress-plastic strain was used to express the fracture behavior of concrete [2, 3 & 4]. In the present study, frictional and vertical contacts between surfaces were considered for conducting interactions between different materials. For frictional contact, the penalty formulation with the fixed friction coefficient of tanδ was used where δ is the angle of friction. The penalty formulations and hard contact were applied between two surfaces for the normal contact. Interactions were considered in the modeling including raft-soil mass, raft-interposed layer, pile-raft, interposed layer-soil mass, interposed layer-pile and the soil-pile [5 & 6]. Coefficient of soil lateral pressure used in this study corresponds to k0=0.65 which is introduced in many geotechnical conditions [7]. A uniform distributed vertical load 500 kPa was applied on the raft. For getting results in every portion of loading time, this amount is applied in order of 5 kPa in each time interval. To accelerate the process of analysis and because of the symmetry of all models in two directions of X and Y, the quarter model technique was used, so that movements in the direction perpendicular to the sheet and rotation around perpendicular axes on the sheet were not allowed on the border of symmetry. The boundaries of the models due to the enough distance from the piles were considered in a way that lateral displacement and rotation around the vertical axis was not allowed. Furthermore, the bottom of the soil mass was considered as complete fix due to the enough distance from the pile foot.
Conclusion
In this research, a numerical – parametric study is performed on special kind of piles named noncontact piles and results are compared with contact piles. Results of this study can be summarized as follows:
1. By increasing the number of piles from 1 to 9, the settlement reduced more in a noncontact state showing more effectiveness of implementing 9 contactpiles and thus requiring more piles in this case.
2. Soil surface stress differences in noncontacts states from 4 to 9 piles was less than contact state (approximately 1/7) indicating that more piles is needed to conduct the contact state.
3. Stress changes in the soil under the pile in noncontact state by adding piles from 1 to 4 was higher than adding piles from 4 to 9 indicating the suitability of using 4 noncontact piles; while, in the contact state, the stress changes in the soil under the pile in both cases from 1 to 4 piles and from 4 to 9 piles was noteworthy showing the necessity of using the ninth pile.
4. Unlike the states of 4 and 9 piles, the negative friction in noncontact state and 1 pile was seen along the piles, which can be due to the fewer piles and the effect of interposed layer density as well as soil mass at greater depthsbecause of lesser effect of piles in load-bearing.
5. The ratio of heads load in the contact to the noncontact piles was about 2.5 to 4 reflecting the positive impact of using interposed layer on load reduction and smaller cross-layer design for piles. In addition, the ratio of heads load in the contact to the noncontact piles was higher for 4 piles than 9 piles that represented the suitability of using 4 piles.
6. Based on the results of geometric parametric studies it is found that:
(A) By resizing the elements from 0.25 to 0.5 m, the results had not changed and only time of analysis was increased.
(B) Among three values of 0.5, 1 and 1.5 m for interposed layer thicknesses, the thickness of 1 m was enough and had a good effect on the stress distribution and involving shallow soil in bearing vertical stress.
(C) The raft thickness of 1.6 m was appropriate so that with this thickness, the resultant effect of increasing vertical loads (raft weight) and increased rigidity due to increased raft thickness caused the stress and settlements remain in a reasonable range.
(D) Due to the increased friction by increasing in diameter, the optimal diameter of 0.5 m was achieved for piles which reduced the settlement by receiving more load.
(E) Among three pile lengths of 10, 19 and 25 m, the optimal length was 19 m; so that by further increase in the length, stresses and settlements were not noticeably changed.In total, noncontact piles had better performance compared to contact piles in similar conditions.
Reference
1. Fioravante V., Giretti D., "Contact versus noncontact piled raft foundations", Can. Geotech. J. 47 (2010) 1271-1287.
2. Saba H., "Verification of nonlinear condition of anchored walls in various loading", Thesis document of Amirkabir University of Tehran, Iran (2003).
3. Fioravante V., "Load transfer from a raft to a pile with an interposed layer", Geotechnique 61, No. 2 (2011) 121-132.
4. Dastani H., Shariati M., "Numerical and experimental analysis of controlling of crack propagation route in a plane under cyclic uniaxial loading by creating openness", Thesis document of Shahrood Industrial University of Shahrood, Iran (2014).
5. Randolph M. F., Wroth C. P., "Application of the failure state in undrained simple shear to the shaft capacity of driven piles", Geotechnique, Vol. 31, 1 (1981) 143-157.
6. Poulos H. G., Small J. C., Ta L. D., Sinha J., Chen L., "Comparison of some methods for analysis of piled rafts", Proc. 14th Int. Conf. Soil Mech. Found. Engng, Hamburg, Balkema, Rotterdam, Vol. 2 (1997) 1119-1124.
7. mottaghi A., "3D static and dynamic analysis of pile group with considering soil-pile interaction", 6th National Congress of Civil Engineering, Iran, Semnan (2012).
Ehsan Dadashi, Ali Noorzad, Koroush Shahriar, Kamran Goshtasbi,
Volume 12, Issue 4 (4-2019)
Abstract

Introduction
Pressure tunnels in hydroelectric plants are used to convey water to powerhouses. These tunnels are the sources of seepage flow to the rock formation, thus, during the water filling, they will have a low resistance to seepage and, by increasing the internal water pressure of the tunnel, the inflow force will be transferred to the rock mass. In these conditions, the cracks, pores and all other elements of the rock mass are affected by the seepage forces in all directions. This hydro-mechanical interaction affects changing the stresses and displacements of the rock mass around the tunnel and causes modifications in the permeability of rock elements during the water filling. Therefore, changes in stress distribution lead to alterations in the permeability coefficient and redistribution of the seepage field. In these conditions, since the analytical solution of the problem is not possible, the numerical analysis based on the finite element method has been used in this study.
Material and methods
In this approach, the rock mass is considered as an equivalent continuum in which the effects of discontinuities are taken into account in its material behavior. High-pressure tunnels under internal water pressure requires reinforced concrete lining to prevent hydro-fracturing. The ABAQUS software is capable of analyzing such as seepage from the tunnel, modeling of the steel bars in concrete, and taking into account hydro-mechanical interaction. Thus, the software is used for numerical analysis.
The pressure tunnel of the Gotvand dam and hydroelectric power plant (HPP) scheme is taken as a case study for the numerical simulation. Pressure tunnel of the Gotvand dam located in the southwest of Iran is taken as a case study for the numerical simulation. Among behavioral models in the software, Mohr-Coulomb failure criterion is considered to describe the rock mass, but the principle of effective stress determines the rock mass behavior. Since the concrete lining of the pressure tunnel will undergo two mechanisms of the cracking due to tension and the crushing due to compression, concrete damaged plasticity model is used to predict the response of the concrete elements. The evolution of the yield surface of the concrete lining is also controlled with tensile and compressive equivalent plastic strains, correspondingly.
In this study, the hydro-mechanical interaction is implemented based on the analysis of the pore fluid/deformation analysis, and the direct-coupled method is used to solve the governing equations of the problem. To verify the proposed model, the elastic behavior of the media is simulated to compare the numerical and the analytical solutions and good agreement is obtained. The numerical analyses are carried out the hydro-mechanical interaction with constant permeability coefficient. When cracks develop in the concrete lining at high water pressure, the properties of the concrete lining change and as a result, the stress dependent permeability of the lining and surrounding rock mass in pressure tunnels should be considered. The coefficient of permeability controls the rate of seepage flow in porous and fractured media. Although permeability represents an original property of the porous media, it can be modified when subjected to the stress variations. Instead of changing aperture, the change in the void space or volume is the typical consequence that results to change the permeability coefficient. In order to bring the model closer to the real conditions and in the validation of the new model, the influence of the permeability coefficient variations of the concrete and rock mass on the deformations and stresses of the model has been added to nonlinear analysis by USDFLD code. Increasing the water head in the tunnel during water filling is also considered with the combination of DLOAD and DISP codes in the model.
Results and discussion
Since the lining and rock mass have nonlinear properties and complex behavior, for verification of the model in ABAQUS software, the model is simulated with homogeneous, isotropic and elastic behavior. The results of seepage flow on the interface of the concrete lining and rock mass obtained by analytical and numerical solutions indicate that there is a ±5 % difference between them. Then, the results of the elastic behavior of the model show a good agreement with the results of analytical solutions. Therefore, this numerical model has been employed for the nonlinear analyses.
Finally, the optimal thickness of the concrete lining with the appropriate arrangement of the reinforcement in the reinforced concrete linings is utilized to minimize water losses from the tunnel based on the new model. Thus, the results of the analysis with the aim of reducing the water losses from the tunnel indicate that the suitable arrangement of the steel bars in the concrete lining leads to the distribution of micro cracks in the lining, and the reinforcement stress stays at a lower value with high internal water pressure. Based on the new numerical model, it is suggested that the lining should be designed with the thickness of 40 cm and the reinforcement with the diameter of 16 mm and the spacing of 20 cm.
 Conclusion
The results of the numerical model indicate that to control the seepage outflow from concrete-lined pressure tunnels, the thickness of the lining and the suitable arrangement of the steel bars in the concrete lining play a significant role in preventing excessive seepage from the tunnel./files/site1/files/124/3dadashi%DA%86%DA%A9%DB%8C%D8%AF%D9%87.pdf

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb