Search published articles

Showing 7 results for Iran

Volume 3, Issue 1 (11-2009)

(Paper pages 563-590) This study explores crustal velocity structure in the west of Iran. Wealth of data from recorded local earthquakes creates an opportunity to image crust and upper mantle in the region and then these data use for the joint inversion method in this region. We proposed to study velocity and interface structure of the crust and upper mantle in the west of Iran using local earthquakes recorded in the Kermansha short-period seismic stations at the Institute of Geophysics, University of Tehran (IGUT), and the Sanandaj broad-band seismic station at the International Institute of Earthquake Engineering and Seismology (IIEES), since 2004. The earthquakes and stations should be directed for the travel time curve analysis. Recorded earthquakes were classified along the five separate profiles and 278 earthquakes (mb≥3) separate in data (3000) and epicenter distance is 10-750 km, that corresponding travel-time curves were analyzed. Moreover, crustal velocity structure is determined based on the travel time curve of local event. So, algorithm program was written and arrival times of body waves compare with forward modeling code was written, in order to refine final model. This processing based on earthquakes with mb≥4 and the error RMS is 0.01-0.26 sec. Compressional wave velocity of the crust is 6.23±0.07 km/s and the upper mantel (Moho) is 8.08±0.08 km/s. since, shear waves velocity for the crust, found to be 3.64±0.06 km/s and the upper mantel (Moho) is 4.70±0.01 km/s. Depths for Conrad and Moho discontinuities were obtained 11±2 km and 43±3 km respectively, which well correlate with the results of the previous gravimetric crustal studies
Sayed Rahim Moeinossadat, Kaveh Ahangari, Danial Behnia,
Volume 9, Issue 1 (6-2015)

The present study aims to employ intelligent methods to predict shear wave velocity (Vs) in limestone. Shear wave velocity is one of the most important rock dynamic parameters. Direct determination of this parameter takes time, cost and requires accuracy as well. On the other hand, there is no precise equation for indirect determination. This research attempts to provide some simulations to predict Vs using the information obtained several dams located in Iran, using different approaches, including adaptive neuro-fuzzy inference system (ANFIS) and gene expression programming (GEP). 136 datasets were utilized for modeling and 34 datasets were used for evaluating its performance. Parameters such as Compressional wave velocity (Vp), density (g) and porosity (n) were considered as input parameters. The values of R2 and RMSE were 0.958 and 113.620 for ANFIS, where they were 0.928 and 110.006 for GEP respectively. With respect to the accuracy of the intelligent methods, they can be recommended for future studies
Akbar Cheshomi, , ,
Volume 10, Issue 3 (2-2017)

Soil classification is one of the major parts of geotechnical studies. So assessment of existing methods for soil classification in different areas is important. For soil classification is used in situ and laboratory test results. Sampling and identification tests are laboratory methods for soil classification. CPTu test is in situ method for soil identification and classification, due to accuracy and speed, this test is used widely in geotechnical study today. Many researchers are proposed some charts for soil classifications based on the parameters measured in CPTu test. In this paper for evaluation the performance of these methods, 58 CPTu test results have been used. These tests are related to four areas in southern Iran. The soils are classified by CPTu methods and then they are compared with 372 laboratory soil classification. Research results show the chart proposed by Robertson (1990) which based on Qt, Ft and Bq variables has the best adaptation with the laboratory soil classification in these studied areas. Then according to data obtained from research, proposed a modified charts based on Rf, qt-u0/σ΄ v , that show 90% adaptation with laboratory soil classification.

Mahsa Rokhbar, A Qishlaqh, G Forghani,
Volume 11, Issue 4 (5-2018)

Exploitation or processing of ores is usually associated with the production of a large amount of waste materials. These materials often have a high concentration of metals which can enter the environment through weathering or erosion. It is well-known that the measurement of the total concentration of metals cannot be an adequate for evaluating the pollution status of soil. Therefore, in most studies on soil contamination, bioavailability content of metals is determined by which can predicate the fate of the metals entering into the other parts of the environment such as plants, water or human food chain. The bioavailability of metals in the soil environment is the exchangeable and absorbable metals for plants, which depends on their exchangeability and absorption by soil organisms especially plants. This is also the function of the chemical form of each element in the soil.  The main purpose of the present study was to measure the total concentrations along with the bioavailable content of metals in soils and plants around the Irankuh mine tailing dams.
Area of study
The Irankuh lead and zinc mine is located 20 kilometers southwest of Isfahan. This mine is of MVT type Pb-Zn deposit which occurred mainly in limestone and dolostone of lower cretaceous age. The Irankuh mine is an open-pit mine with annual extraction of 358 thousand of PbO and ZnO. The exploitation of mine is also associated with the production of a large amount of waste material which is piled in open dumps around the mine. The main minerals of ores are galena, sphalerite and pyrite.
Materials and methods
31 sampling sites were selected randomly for collecting agricultural soils around the tailing dams. Each soil sample is actually composite sample of four samples which are taken from a depth of 15 to 20 cm. Seven cultivated plants (Ocimum basilicum) were sampled from green houses in the vicinity of tailing dams. After drying and sieving, about 50g of the soils are chemically analyzed in order to determine the total concentration of the metals by the ICP-OES method.  Plant samples after drying were changed to ash in the furnace at temperature > 500 C. The concentrations of metals (Zn, Pb and Cd) were then measured by Atomic Absorption Spectrometers in their stem, roots and leaves.
pH samples of soil were also determined using the EPA 9045 method. Walkley and Black method were used to measure the amount of organic matter. The cation exchange capacity (CEC) of soil samples was also determined based on EPA 9087 method. Soil texture determined using hydrometric method and then classified according to USDA classification. Diethylene Triamine Pentaacetic Acid (DTPA) extractable metals (bioavailable content) were determined using the method by Lindsay and Norvell (1978) and their concentrations in the DTPA extracts were determined by Atomic Absorption Spectrophotometer (AAS).
The metal transfer from soil to plant was calculated using the transfer factor (TF: metal content in plant divided by metal content in soil).
Results and discussion
The soil pH of the studied samples varies from 7.36 to 8.35. Cation exchange capacity (CEC) of soil samples was estimated to be in the range of 4 to 22.2 Meq/100 g. Also, the amount of organic matter in the studied soil samples varies from 0.17 to 3.43%. The relative high levels of soil organic matter are probably due to addition of organic manure to soil through agricultural activity. The total concentration of these three matls are significantly higher than their corresponding values in the crust implying that the mining activity and tailing dams greatly elevated the concentration of these metals in soils. Statistically, there is a significant positive correlation among Zn, Pb and Cd (at confidence level of 0.01) indicating that their potential source is the same or having similar geochemical behavior in the soil. The soil clay content showed a significant correlation at the level of 0.05 with Zn, Cd and Pb. This indicates that clay fraction plays a significant role in absorption of these metals in soil. According to the results of single extraction (DTPA method), the proportion of available content for Cd is higher than that of Zn and Pb. Cadmium is often characterized by its high mobility in soil media. Based on the correlation coefficients at the confidence level of 0.01, it is also observed that the increase in total concentration of Cd increased its bioavailability content in the soil consequently increase the availability of other elements in the soil. Therefore, it can be inferred that the availability of Cd in the soils of the study area is likely to be increased in the presence of Zn and Pb because in sites where the total concentration of Pb and Zn is high, the content of Cd availability has also elevated.
Based on the comparison of the average concentration of the metals in different parts of the plants, the concentration of metals is ordered as follows stem> leaf> root, which indicates the high root capacity for the accumulation of metals. The average transfer factor (TF) for Cd is obtained much higher than those of Zn and Pb. There is also a negative significantly correlation between the concentrations of Cd in the aerial parts of the plants and its bioavailability concentration in the soil. Also, there is positive and significant correlation between Zn and Cd for all three different parts and its bioavailability concentration in the soil. In the case of Pb, a significant correlation is observed between stem and root parts. This means that Cd and Zn after being absorbed by the root, are more likely being uptake by the plants due to high mobility of zinc. However due to less mobility of Pb, it is seemingly entered into the plant aerial parts after absorption by the root.
The concentration and degree of contamination of the studied soils is very high in terms of total Pb, Zn and Cd concentrations in agricultural soils around the Irankuh mine. The increased heavy metal contents in soils can be attributed to mining activity and tailing dams near cultivated lands. The measurement of the bioavailable content of these metals indicates that the Cd has the highest availability as compared to Zn and Pb. The average concentration of Pb and Cd in different parts of plant which is higher than the permissible limits, implying that the transfer of the available metal part (especially Cd) from the contaminated soil into the plant. Based on the calculated health risk assessment index in this study, it can generally be concluded that the gradual accumulation of these metals, especially in aerial parts of basil might have health hazards for local consumers.   ./files/site1/files/0Extended_Abstract3.pdf
Ata Shakeri, Fahimeh Yousefi,
Volume 12, Issue 1 (8-2018)

Extended Abstract
The presence of potentially toxic elements in the environment and especially in soil has been one of the greatest concerns due to their health implications. Potentially toxic elements from anthropogenic sources tend to be more mobile than those from lithogenic or pedogenic sources.  Generally, the distribution of potentially toxic elements is influenced by the nature of parent materials, climatic conditions, and their relative mobility depending on soil parameters, such as mineralogy, texture and class of soil. In the inhabited, and industrial areas, vicinity to the un-engineered landfills, excess accumulation of toxic elements in surface soils can directly threaten wellbeing of exposed inhabitants via ingestion, inhalation and dermal contact routes. A few studies conducted on risk assessment of potentially toxic elements in soils of Kermanshah province, west of Iran. Soil in the study area is susceptible to contamination by anthropogenic activities in the form of industrial wastewater, agricultural activities, solid waste, runoff, atmospheric deposition and especially un-engineered landfills. The presence of toxic elements in soil around of un-engineered landfills without proper consideration to the environmental protection measures, will certainly lead to a significant environmental hazard in Kermanshah province. Therefore, the main purposes of this study are to evaluate the contamination levels, health risk assessment, and source identification of As, Cd, Cr, Cu, Ni, Pb and Zn in the Gasre Shirin, Gilane Gharb, Paveh, Javanrood, Eslamshahr, Ravansar, Kermanshah and Sanghar un-engineered landfills.
Material and methods
     A total of 30 topsoil samples were collected (0-20 cm depth) from the eight un-engineered landfills of the Kermanshah province. In order to achieve a representative sample, composite samples were prepared by mixing the four subsamples taken at each corners of 2×2 m square cell because composite sampling yields homogenized samples for analyses. The subsamples were mixed and a final sample of 1 kg was taken by repeated coning and quartering. To determine background concentration of heavy metals, eight soil samples were collected from areas far from known sources of contamination (40-60 cm depth).
The collected samples were immediately stored in polyethylene bags and air-dried in the laboratory at room temperature. Then, samples passed through a 2mm stainless steel sieve. The <2mm fraction was ground in an agate mortar and pestle and passed through a 63 micron sieve. In order to determine the concentration of As, Cd, Cr, Cu, Ni, Pb and Zn complete dissolution of soil samples (approximately 1 g of each) was carried out using a mixture of HF, HNO3, HClO4 and H2O2 in a Teflon beaker on sand bath at atmospheric pressure. The concentrations of the selected elements were measured by an accredited commercial laboratory (Zar Azma Laboratory, Iran) using ICP-MS methods. Data quality was ensured through the use of internal duplicates, blanks, and HRM. The precision and accuracy of measurements are 95% and +/-5% respectively.
The assessment of soil contamination was carried out using geochemical indices including contamination factor (CF), modified degree of contamination (mCd) and enrichment factor (EF). The methodology used for the health risk assessment was based on the guidelines and Exposure Factors Handbook of US Environmental Protection Agency. The average daily doses (ADDs) of heavy metals received through ingestion, inhalation, and dermal contact for both adults and children were calculated. In this study, hazard quotient (HQ), hazard index (HI) and carcinogenic risk (RI) methods were used to estimate non-carcinogenic and carcinogenic effects of heavy metals. The HQ was calculated by subdividing ADD of a heavy metal to its reference dose (RfD) for the same exposure pathway(s). If the ADD exceeds the RfD, HQ>1, it is likely that there will be adverse health effects, whereas if the ADD is less than the RfD, HQ<1, it is considered that there will be no adverse health effects. A hazard index (HI), the sum of HQs, which means the total risk of non- carcinogenic element via three exposure pathways for single element of <1 indicates no adverse health effects, while HI values >1 show possible adverse health effects. Carcinogenic risk is regarded as the probability of an individual developing any type of cancer in the whole life time due to exposure to carcinogenic hazards and was calculated for As and Cd as follows:
The value of SF represents the probability of developing cancer per unit exposure level of mg/kg day. The acceptable risk range for carcinogens is set to 10-6 to by the USEPA, so that RI values below 10-6 do not require further action, while risks greater than 10-4 are considered to be of concern and require additional action to reduce the exposure and resulting risk.
Results and discussion
The soil pH ranges from 7.01 to 8.06, with an average value of 7.51 suggesting neutral conditions. Organic carbon (OC) contents of soil samples ranged from 0.06% to 4.91% (average 1.59%). In this study, based on the USDA textural triangle the main soil textures are loamy, clay loam and sandy loam, respectively.
The average abundance order of selected elements content is: Zn>Ni>Pb>Cr>Cu>As>Cd. Comparison of mean concentration of the potentially toxic elements in the soil samples with mean worldwide values reveals higher Zn, Pb and Ni contents in this area.
The results of contamination factor indicate very high contamination for Cd, Cu, Pb and Zn. Modified Degree of Contamination (mCd) calculated based on background values proves very high degrees of contamination for selected trace elements in Gasre Shirin and Eslamshahr landfills soil samples The results of enrichment factor evaluation similarity to contamination factor indicate that Cd, Cr, Pb, Cu and Zn have more influence from anthropogenic sources. The maximum EF of Pb, Zn and Cd and Cu is 346.7,124 and 51.9 respectively, which means very high enrichment in Ghasre Shirin landfill soil samples.
Exposure doses of 7 heavy metals in soil samples of un-enggenerd landfills for children and adults were calculated. The total exposure HQs calculated based on adults from ingestion, dermal contact, and inhalation for Cd, Cu, Ni, Zn, As and Pb was less than 1(except Ghasreshirin landfill). The hazard quotient values based on the adult risk for Cr were greater than 1.0. The results show that HQ for Pb and As in children by dermal and ingestion pathway is exceeded 1.0 in soil samples of Paveh, Javanrood, Ravansar, Kermanshah and Sangher landfills and Ghasreshirin and Eslamshahr landfills, respectively.
The concentration, pollution level, potential sources and health risk of potentially toxic elements in eight landfills top soil of Kermanshah province were investigated in this study. The following conclusions were drawn from this research.
- Compared with the background values of As, Cd, Cr, Cu, Ni, Pb and Zn in soils of Kermanshah Province, landfills soil have elevated metal concentrations as a whole.
- According to high contamination level and health risk of some studied potentially toxic elements, and also due to the proximity of contamination sources to residential district of the study area, more attention should be paid to manage and reduce contamination.
- These results provide basic information of toxic elements pollution control and environment management in the area../files/site1/files/121/Shakerii_Abstract.pdf
Mohammad Emad Mahmoudi Mehrizi1, Younos Daghigh, Javad Nazariafshar,
Volume 14, Issue 1 (5-2020)

The increasing rate of construction activities in urban areas is accompanied by excavation in the vicinity of existing structures and urban utilities. This issue has highlighted the importance of constructing protecting structures in order to control displacements and prevent damage to structures and their neighboring area. Among the important widely used wall stabilization techniques, one can name nailing and grouted anchors. However, these methods suffer some drawbacks such as annoying noise and vibration during the drilling, implementation difficulties below the water table, grouting problem, installation of strands and bars in the borehole in porous and collapse soils, and long curing time for the grout of post-tension anchors. Since the helical anchor method lacks many of the mentioned problems, it is now widely used in many applications.
In the present work, a laboratory model of helical anchor stabilized wall is presented and evaluated. For this purpose, four types of anchors at 20° back slope are designed in a sandy soil and the effect of helix configuration (in term of its diameter and number of blades) is investigated. Considering the laboratory scale of the designed model, the results obtained using helical anchor were compared with numerical results of soil nailing wall by applying the particle image velocimetry (PIV) analyses.
Material and methods
The test box designed in this work is made of a metal plate with a thickness, length, width, and depth of 1.5 mm, 100 cm, 60 cm, and 30 cm, respectively, and a Plexiglas in its opposing side with a thickness of 50 mm. The soil used in the experiments was the dry sand of Soufian region in east Azerbaijan province of Iran. The soil is classified as SP according to USCS classification. The helical anchors were fabricated by welding the helical pitches to a metal shaft. The end part of the shafts is screw threaded such that to fasten a bolt to them.
To start the experiment, the empty box was completely cleaned using the detergents to remove any pollution or soil on the Plexiglas and metal surface. Afterward, the sandy soil was poured on the wall floor and the facing was placed inside the box vertically. Again, the sandy soil was poured from both sides of the facing up to the installation height of the helices. Helices were installed in the assigned holes and their angle was adjusted through the pre-fabricated stencils. The soil height was increased up to the next row assigned for helices installation. These steps were repeated until reach the wall crest. After preparation of the physical model, its behavior during the preparation must be modeled. We first filled both sides of the model and then modeled the stability behavior of the helical anchor wall through excavating its facing opposed side. Overall, the wall was built through eight excavation steps.
Results and discussion
The maximum displacement is related to the anchor type 1, which does not have enough bearing capacity under surcharge conditions. By changing the anchor type and increasing the number of helices, shear strains and their expansion in the wall back decline. The decrease in displacement rate by changing the anchor from type 1 to type 2 is 18%, which is due to the low bearing capacity of type 2 anchor compared to the type 1 anchor. Increasing the number of pitches from one to two (changing the type 1 anchor to type 3 anchor) showed a considerable decrease (i.e., 43%) in displacement rate. Increasing the number of pitches from 1 to 3 (changing the anchor from type 1 to type 3) resulted in a 62% decrease in wall crest displacement. This displacement decrease rate seems to decline with an increase in the number of helixes.
The displacement rate for all four anchors is almost similar in two excavation steps, which probably is because of the need for displacement for activation of the anchors. One strategy to deal this issue in the sensitive projects and control the displacement is to apply post-tension helical anchors. Then, in stages 4 to 6, the displacement was almost constant due to four main reasons including wall rigidity, the presence of reinforcements, formation of pre-step displacement-induced tension force, and enough capacity of anchors to face with more displacement. In stages 6 to 8, type 1 and 2 anchors showed growing displacements due to the reduction and ending the wall rigidity and lower bearing capacity. In type 3 and 4 anchors, the maximum displacement was related to 4 initial stages. In type 1 and 2 anchors, which have two helical plates, almost a similar behavior was observed until stage 6 of excavation, but eventually type 3 anchors showed better performance because of higher bearing capacity to overall displacement.
In the present study, a physical model was designed to investigate the effect of helical anchors’ geometry on displacement rate of helical anchor wall and compare it with a nail wall. Overall, comparing the results obtained by conducting these experiments on a helical anchor stabilized wall and a nail wall revealed that:
- Wall crest displacement is affected by the diameter and number of helices and decreases by an increase in bearing capacity.
- The increase in the number of pitches from one to two (single-pitch to double-pitch anchor) has a higher effect on displacement control compared to the case of changing the double-pitch to triple-pitch anchor. So, it can be stated that a further increase in the number of anchor pitches results in a declined performance of the anchors.
- All anchors need a slight displacement for activation. This issue cannot be resolved by changing the type of helical anchors. Hence, when the displacement required for activation of the anchors exceeds the allowable wall crest displacement, use of post-tensioned helical anchors is recommended.
- A comparison between nailing and helical anchor results revealed that the relative density of the wall stabilized with the helical anchor is less than that of the nail wall; and wall crest displacement in the helical anchor wall was very lower than that of nail wall. Thus, the helical anchor wall stabilization is preferred when other economic and technical requirements are met.
Ata Shakeri, Maryam Madadi,
Volume 14, Issue 5 (1-2021)

We collected soil samples at 23 sites from the petroleum contaminated soils (PC) in the west of Kermanshah province to investigate the sources and ecological risk of polycyclic aromatic hydrocarbons (PAHs). In this study, source apportionment has been carried out using Positive Matrix Factorization (PMF).The total PAHs concentration, have a mean value of 92.79 mg/kg, ranging from 7.37 to 609.67 mg/kg in PC soil samples. The average abundance order of different PAH ring compounds are 3 rings > 5+6 rings > 4 rings> 2 rings. The ecological risk assessment of PAHs revealed that all of the PAHs levels were higher contents than the effects range low (ERL) value and show higher concentrations than the ERM values, except for Pyr, Chr, BaA, BbF, BkF and BaP in the soil samples. The result of benzo (a) pyrene equation (BaPeq) values indicates that the carcinogenic potency of PAHs should be given more attention due to the impending environmental risk in the study areas. Based on the PMF analysis four sources of PAHs are identified including coal combustion (21.48%), vehicular source (13.74%), unburned petroleum (20.84%) and creosotes (43.92%).Therefore, it was concluded that petroleum activities were major sources of PAHs in west of Kermanshah province.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb