Search published articles

Showing 7 results for Liquefaction

, Mohamad Ghafoori, Javad Ahmadzadeh, Salameh Afshar,
Volume 10, Issue 1 (8-2016)

In tunnelling in soil mass, in groundwater existing mode, liquefaction, elastic displacements and settlement in soils upon the tunnel, are the risks may attack the excavated underground space stability. In this case study that were performed on second line of Mashhad city subway route, information catched from Standard Penetration Test, in situ and laboratorial tests, were used to optimum numerical values search for soil engineering parameters that could optimize the TBM stationing level. In order to this goal attaining, intelligent, numerical and probabilistic methods were used and the reliability of intelligent and numerical methods with the Safety Factors of tunnel stability, investigated simultaneously. The results were denoting the accordance of intelligent models such as Genetic Algorithm (GA) and Multi objective Genetic Algorithm with Finite Element model's output. So these models could be complement of each others in planning and designing of tunnels and using of them advised in tunneling and excavations.

Mohammad Adampira, Hamid Alielahi, Mehdi Panji, Hamid Koohsari,
Volume 10, Issue 2 (11-2016)

Due to the increasing importance of geomorphologic conditions on the seismic ground response, the effect of liquefiable soils on seismic ground surface response is discussed. At first, the equivalent linear analysis based on total stress model in the frequency domain is carried out and then the nonlinear analyses based on total stress, effective stress model and considering the pore water pressure development in time domain are done in order to evaluate the differences between the several types of ground response analysis methods. DEEPSOIL.Ver5 software is used based on the latest achievements and various techniques in both solution domains. LNG port project in Assaluyeh, situated in south of Iran, is considered as a case study. Due to lack of the real data recorded near-field fault at the project site, the simulated method is used in order to create the artificial earthquake. Also three far-field earthquakes have been selected based on conventional seismic hazard studies for the seismic ground response analysis. Then, in order to better understanding of the obtained responses, the resulted responses spectra are compared with the acceleration design spectra provided in some valid codes. The result of this study indicates that the pulse effect in the horizontal component of acceleration perpendicular to the fault plane direction, affects severely the surface ground response of the near-field earthquake. The obtained results of the nonlinear modeling of the soil with excess pore water pressure build-up in the time-domain are extremely different from those of frequency-domain responses based on the equivalent linear method. In addition, because of the inherent linearity of equivalent linear analysis which can lead to spurious resonances in ground responses, the peak ground acceleration in the time-domain is lower than the frequency-domain.

Delara Oshnaviyeh, Rouzbeh Dabiri2,
Volume 12, Issue 2 (10-2018)

When loose sand is subjected to seismic shaking, it tends to volume reduction and settlement. The density of the under layers is revealed in the settlement of the ground surface that causes the destruction of the structures located on ground surface. In dry sand layer, settlement in severe shakings occurs under a constant and effective stress condition and very rapid stress. In this regard, the sand deposit settlement is completed before the end of an earthquake, but if the sandy soil layer is saturated and drainage is limited the condition is prepared of fixed volume situation and the major effect of the seismic shocks is generation of exceed pore water pressure. Therefore, the deposit settlement of saturated sand requires a longer time, varying from a few minutes to a few days, depending on the permeability and compressibility of the soil and the length of the drainage path. The main purpose of the present study is to evaluate liquefaction hazards along Tabriz Metro Line 2 with using Standard Penetration test (SPT) and shear wave velocity (Vs) methods. Also, the probable rate of settlement in the soil layers in study area and correlation with liquefaction potential index (LPI) according to both procedure have been determined and discussed in the following paragraphs.
Material and Methods
In order to evaluate the liquefaction potential of soils using two field methods, geotechnical information of 54 boreholes in Tabriz Metro Line 2 were collected. The types of soil and geotechnical properties can affect the liquefaction potential. In this study, the gravely sand, silty sand, silty and sandy soils were studied. Ground water level is one of the main parameters in in soil liquefaction potential evaluation of soils. Variation of water level in boreholes is 2 to 30 meters. The peak ground acceleration (PGA) is necessary for the analysis of boreholes to evaluate liquefaction potential of soils. PGA values were selected in each boreholes position according to the Iranian Code of Practice for Seismic Resistant Design of Buildings (Code-2800-ver.4) equal to 0.35g (for return period 475 years and design life 50 years). Liquefaction potential of soil layers based on SPT results with appliying Idriss and Boulanger (2010) method has been assessed. Andrus, Stokoe and Jung (2004) procedure was used in shear wave velocity (Vs) method (with assuming cementation and un cementation condition in soils). Liquefaction potential index (LPI) of soil layers was calculated for both field tests results. Then, probable rate of settlement due to liquefaction in saturate soil layers was determined. Tokimatsu and Seed (1978) method applied for SPT results, Yoshimine (1992), Yoshimine et al. (2006) and Yi (2009) procedures have been used in Vs test. Finally, correlation between rate of settlement and LPI results were determined.
Results and discussions
Outcomes of this study can be explained in below:
1. Results obtained from comparison of both methods in liquefaction potential evaluation have been showed, agreement between two methods have been happened rarely. Specially, with assuming cementation condition in soils, LPI obtained from Vs method is more than SPT. Although, different factors can be affected at uncertainties in SPT results such as type of drilling machine, energy efficiency and accuracy of test performing. Also, in shear wave velocity method, maximum velocity for occurring liquefaction in soil layers () related to fines content percentage. It is possible that boundary values in procedure not compatible with geotechnical properties in study area.
2. Evaluation of probable rate of settlements in soil layer in study area have been showed that settlement values obtained from Vs is more than SPT. This condition is compatible with LPI amounts.
In sum up, settlement due to liquefaction in saturate soil layers is one of the important phenomena in geotechnical earthquake engineering. Maximum rate of settlement in soil layers in study area is equal 0.45m based on SPT method and 0.9m according to Vs procedure which should be considered. Accordingly, serious damages can be inflicted to buildings, underground structures and life lines in study area.  Therefore, it is suggested in future researches with using empirical and numerical (or soft computing) methods based on field and experimental tests results a detailed assessment conducted and influence of various parameters on settlement of soil layers be determined and the items listed below should be considered:
- Cementation parameter (C) values of soils in shear wave velocity method maybe not compatible with geotechnical properties in study area. It should be evaluated exactly. 
- In this research, peak ground acceleration (PGA) value was selected based on code 2800-ver.5. As regard to Tabriz Metro Line 2 is beside to Tabriz North Fault, PGA value according to historical earthquake catalogue and seismic risk analysis should be evaluated and seismic hazard have to determine with accuracy. 
Hadi Bahadori, Roohollah Farzalizadeh,
Volume 12, Issue 3 (12-2018)

When saturated sandy soils are subjected to seismic loadings, the pore water pressure gradually increases until liquefaction happens and settlement occurs during and after an earthquake. The mentioned problem is attributed to rearrangement of grains and redistribution of voids within the soils. Over the years many methods have been presented to increase liquefaction resistance. However, the main methods utilized in liquefaction mitigation are classified as densification, solidification, drainage and reinforcement techniques. Utilizing scrap tires in soils is a kind of soil reinforcement which has a wide range of application.
Waste material expulsion is one of the environmental problems each country faces. Accumulation of non-degradable polymeric materials in landfills has serious environmental consequences. Efforts to find new ways of soil reinforcement have drawn the attention of researchers towards the use of new recycled materials like scrap tires derivatives. Derivatives of scrap tires have different applications in civil engineering such as reinforcing soft soil, as a drainage layer in landfills and as filler materials.
Material and methods
In this paper a series of 1g shaking table tests were performed to investigate on the effect of tire powders-sand mixture in reducing liquefaction potential, settlements after earthquake and pore water generation. Shaking table is made of Plexiglas with inner dimensions of 200×50×70 cm. At bottom of the container a void chamber is made by using a number 200 sieve so that the saturation process could be done gradually and uniformly. A plastic plate was rigidly fixed at the center of container to separate reinforced and unreinforced samples from each other and waterproofing carefully. Therefore two models (reinforced and unreinforced) can be tested at once with the same input acceleration. An absorbing layer of foam with 2 cm thickness was employed to decrease the effect of boundary conditions in order to avoid a direct confrontation model with a rigid container. Firoozkuh No. 161 sand and tire powders were used for the mixture in reinforced side, and pure sand in unreinforced side. In this study 4 mixture ratio (TC=5%, 10%, 15% and 20%) were done. Both of unreinforced (pure sand) and reinforced (tire powders-sand mixture) models were prepared by wet tamping method, in which soil is mixed with 5% water. Each model was prepared in six layers. The required weight for each layer was considered based on the desired density (relative density is zero) and exact volume of the layer. Each portion was placed into the model container and then tamped to reach desired level. Carbon dioxide (CO2) was allowed to pass through the specimen at a low pressure in order to replace the air that trapped in the pores of the specimen. Then water was allowed to flow upward through the bottom of the container at low pressures in order to flush out the CO2 that cause increasing the final degree of saturation. Vibration with approximate uniform amplitude and 2 Hz frequency was applied to the container.
Results and discussion
Results indicate that acceleration within the soil tends to be increased towards the soil surface. On the other hand, after initial liquefaction (that occurred at un-reinforced models), acceleration is decreased due to the increase in excess pore water pressure. Also, it can be seen that the increase in tire powders ratio remarkably reduces the maximum excess pore-water pressure ratio. The settlement of the tire powders-reinforced models is significantly less than the unreinforced models, and with the increase of the tire powder percentage shows a very small increase of volume. The outcomes show that the value of the mean damping ratio versus the shear strain range of 0.01 is increased with the increase in tire powder content. Shear modulus is obtained from the ratio of the difference in maximum and minimum stress and strain developed in desired loop. The maximum of the shear modulus in reinforced models is more than the unreinforced models.
The main aim of the present paper was to investigate the influence of reinforcing a saturated sandy soil with tire powders on the soil dynamic properties and the mitigation of liquefaction potential. The following conclusions were drawn from this research.
- The increase of pore-water pressure leads to a reduction in soil shear stiffness and acceleration amplitude.
- Reinforcing sand with tire powders reduces the excess pore-water pressure ratio because of liquefaction and increases liquefaction resistance. 
- Reinforcing sand with tire powders decreases settlement caused by liquefaction.
- The damping ratio decreases at large shear strain as liquefaction occurs.
- Maximum shear modulus and mean damping ratio of reinforced soil has been increased with increasing tire powder content in the mixture../files/site1/files/123/3BahadoriFarzali.pdf
Adel Asakereh, Mahdieh Shabani,
Volume 13, Issue 4 (1-2020)

Estimation of Liquefaction is one of the main objectives in geotechnical engineering. For this purpose, several numerical and experimental methods have been proposed. An important stage to predict the liquefaction is the prediction of excess pore water pressure at a given point. In general, there are two important methods for soil dynamics analyses, fully coupled effective stress and uncoupled total stress analysis. The main purpose of this study is to evaluate the model capacity of the finite difference software, FLAC, based on effective stress analysis methods to predict the excess pore water pressure during seismic loading. A level ground centrifuge test conducted during the VELACS project on the Nevada sand with a density of 40%, was utilized to calibrate the numerical model. After the validation of the numerical model, a model was conducted to predict excess pore pressure and consequently the liquefaction for the site of Bandar Abbas Mosque.
Theoretical bases
A fully coupled u–P formulation, where pore pressures and displacements are computed simultaneously and interactively at each time step, is used in FLAC software. This feature is used to simulate the excess pore water pressure time histories during cyclic loading.
The finite difference based software, FLAC, used the Finn model that incorporates two equations correlating the volumetric strain induced by the cyclic shear strain and excess pore water pressure produced during cyclic loading. As mentioned above, the pore water pressure generation can be computed from two sets of equations: Martin et al. (1975) and the Byrne (1991) formulations in which the volumetric strain that was produced in any cycle of loading is depended on the shear strain that was formed during that cycle as well as the previously accumulated volumetric strain.
Modeling and Results
The VELACS model # 1 centrifuge test representing a level ground site constituted of the Nevada sand at 40% relative density has been numerically simulated in the current study to validate the numerical model. The centrifuge model contains a laminar box with slipping “rings” that allows differential horizontal displacements. This was simulated in the FLAC model by free-field boundary conditions which prevent reflection of the waves in the side walls. Figure 1 shows comparison of EPWP time histories ratio of numerical modeling and centrifuge test. Static analysis was carried out before dynamic analysis in order to find initial stress and strain state. At the next stage, the dynamic loads were applied at the base of the model and dynamic analysis was performed.
The Bandar Abbas mosque project is located approximately 500 meters from the coast. In the project, due to the groundwater level and the existence of loose layers of silt, investigating the potential of liquefaction is necessary.
For numerical modeling the results of the general soil mechanics test on soil samples and standard penetration test performed on the site were used to calibrate the parameters and select the model constants.
The results of numerical modeling have been matched to experimental results of the centrifuge test using both Martin and Byrne formulations, except for the case of 5 m the numerical model has predicted lower excess pore water pressure values than the experimental values. This may be originated from the fundamental assumption of the Martin et al. (1975) EPWP theory, in which excess pore water pressure is directly related to the relevant volume changes. On the other hand, the Martin et al. (1975) model was adopted for one-dimensional measures of shear strain, while, in a 2D analysis under both horizontal and vertical shakings, there are three strain rate measures. FLAC uses some assumptions to solve this problem and it can affect the results.
The results of the numerical model showed liquefaction to a depth of about 5 meters that is almost compatible with the results from the lab, which has declared that the depth 2 to 5 m is liquefiable.
With careful selection of numerical model parameters one can generally use the simulation results to have a general sense on the pore water pressure generation and liquefaction prediction.
Ehsan Taherabadi Eliyas, ,
Volume 13, Issue 5 (2-2020)

This paper investigates the effect of micropile installation into saturated sandy soil by means of finite element method. The obtained results from numerical modeling are compared with the received data from the site. The validation of software has been done by simulating standard penetration test. The effect of some changes in spacing (3m, 1.6m and 0.8m) and injection pressure (1cm, 2.5cm, 5cm and 10cm boundary displacement) micropiles on liquefaction behavior was discussed. The results show that numerical modeling presented a conservative conclusion about the potential of liquefaction. The modification of soil increased by increasing injection pressure of grout. Also, it was observed that the effect of micropile spacing has less impact than the injection pressures up to 1m free distance of micropiles. Then for closer micropiles, the effect of spacing and the effect of pressure became bold and intensive, respectively. Because of direct relationship between number of SPT and liquefaction potential, it would be necessary to simulate SPT and to validate with the real data, before and next of micropile installation. This approach can be a proper way of forecasting the efficiency degree of modification by micropiles and could save costs and time.

Mr. Mohammad Alizadeh Mansouri, Dr. Rouzbeh Dabiri,
Volume 16, Issue 1 (10-2022)

In this study, it is attempted to analyze sensitivity and reliability in order to evaluate the liquefaction potential in soil layers in Tabriz. 62 boreholes that had possible conditions for liquefaction were selected. Seismic mapping was simulated using finite fault method and then the effect of soil layers on PGA was estimated. In continue, the liquefaction potential index was estimated and the zoning map of liquefaction risk was presented. In final, through sensitivity and reliability analysis of the Monte Carlo method, the rate of density function against safety factor of the soil layers versus to liquefaction was determined.

Page 1 from 1     

© 2023 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb