Search published articles


Showing 2 results for Aggregates

Gholamhosein Tavakoli Mehrjard, Fariba Motarjemi,
Volume 12, Issue 2 (10-2018)
Abstract

Introduction
The general failure mechanism of soil element in geotechnical structures is shear failure under static and dynamic loads. Therefore, assessment of soils’ shear strength parameters is very crucial in the performance of geotechnical structures, especially in slope stability. Tavakoli Mehrjardi et al. (2016) showed that by increasing soil grain size in unreinforced soil masses, bearing capacity of foundation increases due to increasing shear strength parameters of soil mass. Furthermore, Tavakoli Mehrjardi and Khazaei (2017) found out that generally, for all reinforced and unreinforced conditions, cyclic bearing capacity was enhanced by increasing the medium grains size of backfills. Taking into account the deficiency of studies on the shear characteristics of soil, a series of large direct shear test have been carried out to investigate and to compare effects of the soil’s physical properties such as aggregate size and relative density, besides of normal stress, on the shear characteristics of the backfills.
Material and Test Program
In this study, three types of uniformly graded soils as fill materials with the medium grain size (D50) of 3, 6 and 12 mm were considered. These soils are classified as SP and GP in the Unified Soil Classification System. It should be mentioned that these materials can be used in railroad as ballast and in retaining walls as fill materials. The current study aims to investigate strength characteristics of the backfills, influenced by different parameters such as relative density of the fill materials, normal stress on the shear plane and aggregate size of the fill materials. To cover all the matters, 18 large-scale direct shear tests have been scheduled. These tests encompass two relative densities of fill materials (50% and 70% which represent medium dense and dense backfill, respectively), three aggregate sizes of fill materials (3, 6 and 12 mm- selected based on the scaling criteria on size of shear box) and three normal stresses (100, 200 and 300 kPa- these values cover rather low to high vertical stress in a soil element of common geotechnical projects) have been examined. It should be mentioned that, prior to shearing, the normal stress was applied to the specimens for a period of 1 h, in order to stabilize the soil particles from any possible creep. As all materials used in this research are of coarse-grained type and the experiments were performed under dry conditions, the displacement rate of 0.5 mm/min was selected. During the tests, the applied normal stress, displacement of the lower box, shear force mobilized at the interface and vertical displacements of the cap were continuously recorded.
Results and discussion
The curves of shear stress as a function of shear displacement and also shear displacement-vertical displacement for samples show that shear stress dropped down to a specific amount of residual shear strength after reaching maximum amount of shear stress . It was observed that increasing the particle size and relative density of the fill materials mostly fortify interlocking of the grains which in turn, resulted in increasing the tendency to expansion through the shear plane. On the other hand, the initial compression has decreased and dilation was started from a smaller shear displacement. This may be interpreted that as the soil particles size increases, more expansion is required to reach the maximum shear strength. Moreover, comparing the observed behavior, it is found out that unlike the effect of grain size and density, increasing the normal stress caused the materials to be more compressed, resulted in reducing expansion and increasing the initial compression of the soil mass. This conceivably means that increasing normal stress, transferred on shear plane, can change the failure mechanism of materials, from dilatancy failure to bulging failure under shearing. From the results, it was found out that increasing medium grains size of soil from 3 mm to 12 mm ended to improvement in the maximum friction angle at relative density 50 and 70% by the value up to 4.4 and 5.8 degree, respectively. In fact, due to increasing grain size, the grains interlocking have been fortified. In order to have a comparison, the maximum dilation angles of all fill materials, mobilized at the shear plane, have been derived. Accordingly, the maximum dilation angle was increased with the increment of the fill grains size and relative density of the material. Nevertheless, by considering variation of peak dilation angle with normal stress, it is found out that the normal stress had a negative influence on the advancement of interface’s dilation angle. These findings can be directly interpreted by considering the compression/expansion of the materials during the increment of shear displacements.
Conclusion
The current study, consists of 18 large-scale direct shear tests, aims to investigate shear characteristics of soil which influenced by different parameters such as relative density of the fill materials, normal stress at the shear plane and aggregate size of the fill materials. Eventually, the following conclusions are presented:
  • Increasing relative density, soil particle size and normal stress have beneficial effect in shear strength improvement. But, the mechanisms of each parameter in this enhancement is different.
  • The dilation rate of shear interfaces directly complies with changes in the ratio of applied shear stress to vertical stress. So, the maximum dilation angle and the maximum ratio  mobilized at the shear plane have occurred around the same shear displacement.
  • Maximum values of friction and dilation angels have been occurred around the same shear displacement. Moreover, compaction effort leads to increase the required shear displacements to approach the maximum shear characteristics.

Amirhasan Rezaei Farei, Masoud Mostafaei, Kazem Razavi,
Volume 13, Issue 4 (12-2019)
Abstract

Introduction
Urban development and rapid extension of cities have been accompanied by a considerable growth in mechanized tunneling. The abrasivity of rock and even soil is a factor with considerable influence on the wear of tools. Soil abrasion and the resulting tool wear has a major impact on machine operation, utilization, and tunneling costs and time. One of the problematic aspects of working in abrasive grounds is the frequent need for the replacement of cutting tools, especially in pressurized face tunnel boring machines (TBMs). The effect of worn and damaged TBM cutter heads has been documented for numerous tunnel projects around the world. However, the lack of a standard or universally accepted test for soil abrasivity in geotechnical investigations has made the prediction of tool wear a difficult task.
Material and methods
A reliable prognosis of the abrasiveness of soils on a project would be of great benefit for designers, clients, and contractors. Many abrasion tests exist for rocks, and some have been proposed for soils; however, there is no universally accepted or international standard test for soil abrasivity testing. One of the most important and available tests in this field is LCPC abrasivity test which was developed by the Laboratoire Central des Ponts et Chaussées in the 1980’s. The LCPC Abrasivity Coefficient (ABR or LAC) can be used as a measure for both the abrasivity of the soil material and the influence of the grain size. The  abrasivity  testing  of  rock  is  controlled  by well-known parameters, whereas in soils many factors are influencing the abrasivity such as in-situ soil conditions, sedimentary petrology and technical   properties.
Tabriz metro line 2 Project about 22 km in length that will connect eastern part of the Tabriz city to its western part, considered as a case study. The project comprises a single tunnel which has been constructed using two earth pressure balance EPB-TBM with a cutting-wheel diameter of 9.49 m. In this study, based on geological and geotechnical properties, the tunnel route was divided into four parts and the abrasion and brittleness coefficients of alluviums determined by LCPC test. Besides that, the influences of some factors such as moisture content, mineralogy, grain size and shape, type and amount of foam have been studied.
Results and discussion
Based on more than 130 LCPC test results, in general, the Tabriz Metro’s line-2 route alluviums have the abrasion in the range of low to very high and the brittleness in the range of high to very high. In order to measure the effect of moisture content on abrasion and brittleness coefficient, the LCPC test was done on some samples related to the tunnel route in dried and moistened modes (5%, 0%, 15%, 20%, 25%, and 30%). Three types of sandstone, andesite, and conglomerate of the route were used to test the effect of moisture and petrology on abrasion. In a moisture range of 0 to 5%, in all types of materials, abrasion was increased. In a moisture range of 5 to 10%, abrasion was decreased in all three types, and this shows that a moisture level of 10% is a normal moisture content to create minimum abrasion. The behavior of sandstone and conglomerate is similar at higher moisture contents, and an increase in moisture content to 30% can increase abrasion of materials in both types. In conglomerate, abrasion at higher moisture levels is significantly more than in other modes. In andesite, an increase in moisture content to 20% can increase abrasion, although the abrasion is decreased with a moisture content of over 20%. In most samples, increase in moisture content led to decrease in brittleness of materials. In general, the highest abrasion level was related to conglomerate and the lowest level was related to sandstone. Moreover, andesite was at a lower level than conglomerate and a higher level than sandstone in terms of abrasion. Also, the results show that increased grain size led to increased abrasion, and the changes in andesite were greater than in sandstone.
In order to test the effectiveness of foam on abrasion, the foam used in workshops (A 168) made by Komeil Company Kashan was used for four types of petrography: conglomerate, andesite, sandstone, and silica. This test was conducted in the range of dried to 100 ml foam. In all types, decreased abrasion is observed from 0 to 20 ml and increased abrasion is observed from 20 to 100 ml.
Conclusion
The following conclusions are drawn from this research.
- With regard to the effect of grain size, increased size of grains could lead to more abrasion and less brittleness
- In terms of the effect of mineralogy, the conglomerate had the most effect on abrasion. In terms of brittleness, andesite was the most brittle.
- When the foam is moisturized in the sample, minimum abrasion is observed and above this level, the abrasion is increased.
./files/site1/files/134/4.pdf

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb