Search published articles


Showing 2 results for Attenuation

H Gh, H Sadeghi,
Volume 7, Issue 1 (8-2013)
Abstract

Wave velocity and attenuation are among the most important attributes of stress waves that propagate through geomaterials. Utilizing these attributes, it is possible to acquire useful information about porous geomaterials such as soil and rock and also the fluids that saturate the pores of geomaterials. The key point in order to gain this information is to establish an accurate link between field measurements of wave attributes and physical properties of geomaterials’ skeleton and pore fluid. The pore fluids and their inhomogeneous distribution fluid are among factors that affect wave velocity and attenuation to a considerable extent. Patchy saturation of pores which occurs on the scale larger than grains size but smaller than wavelength is one of the reasons that causes inhomogeneity in pore fluid distribution. The influence of such inhomogeneity is studied in present paper. Two different attenuation mechanisms including relative movement of fluid with respect to solid phase and also attenuation caused by grain to grain contact are implemented to fully assess wave attenuation. It is observed that the former attenuation is more dominant at higher frequencies compared to the latter attenuation.
Alimohammad Ajorloo, A. Yadolahi, A.r. Zolfaghari,
Volume 9, Issue 4 (3-2016)
Abstract

The use of heavy concrete as a protective shield against high-energy gamma rays is very common. It is also an effective, versatile and economical material. The heavy concrete production can use lead slag as raw materials. The use of lead slag in the production of concrete blocks saves natural resources and reduces the environmental problems caused by the accumulation of industrial waste. However, concrete production, due to the presence of heavy metals with high atomic number can be used as an effective shield against gamma radiation. This study examines the use of lead slag produced in the battery recycling process as concrete aggregates. For this purpose, strength and gamma-ray attenuation coefficient for concrete samples prepared by replacing 40 to 60 percent lead slag instead of natural aggregate. The effect of 1 to 5 percent lead powder in setting time of concrete was measured. The results showed that by increasing the amount of lead slag, density, mechanical strength and gamma-ray attenuation coefficient for concrete samples increased significantly, but lead powder delays setting time of cement paste. In general, appropriate lead slag concrete construction with minimal thickness, reduce the cost of protection and provides the highest level of attenuation

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb