Search published articles


Showing 21 results for Cement


Volume 3, Issue 1 (11-2009)
Abstract

(Paper pages 543-562) When two solutions are mixed, concentrations in the mixture are volume-weighted averages of the two end-members, but the thermodynamic activities of the species controlling the water–mineral reactions are non-linear functions of the mixing ratio. Therefore, two end member solutions in equilibrium with carbonate phase could lead to a mixture undersaturated with respect to carbonate. A favorite place for this phenomenon is water table, where mixing of different waters is taking place. In this paper, Porosity change in freshwater lens of an island was calculated by coupling dissolution potential with a variable density flow and solute transport model. The effect of permeability enhancement on the rate of porosity change was evaluated. Dissolution due to this mixing takes place in water table and active edge of freshwater lens (40m from coastline). The results indicate an increase rate of 0.6×10-3 percent of porosity per year. Permeability enhancement increases the rate of dissolution and porosity change in fresh water lens.

Volume 4, Issue 2 (5-2011)
Abstract

The Alborz dam rock foundation is composed of marl and sandstone. With regard to the proposed plan for the grout curtain in marly rocks (relatively soft and plastic( which is significantly different from the hard and brittle rocks, the boreholes spacing (influence radius slurry), injection pressure (resistance rock), and even the composition and concentration of slurry are important. In the present paper, in order to evaluate the grout curtain of Alborz Dam, emphasis has been placed on two important parameters, namely, the coefficient of permeability and cement take. The results of cement take suggest that the distance between the primary boreholes is long and there is no proper connection between the primary and secondary boreholes. Moreover, grouting results of the fifth and sixth series of grout holes imply that the depth of some of the sixth series of grout holes has not been attained at the water tightening surface. A review of the rate of the cement take - time - pressure graphs and cement take - time graphs on the right abutment indicates that the injection pressure has not been applied in accordance to marly rocks leading to unfavorable phenomenon of opening and closing of joints (hydrojacking). Notably, the check holes results on the right abutment indicate that water tightening at this area has been provided a satisfactory and acceptable job.
Amir Hamidi, P. Yarbakhti,
Volume 6, Issue 2 (4-2013)
Abstract

In this paper, a constitutive model is proposed for prediction of the shear behavior of a gravely sand cemented with different cement types. The model is based on combining stress-strain behavior of uncemented soil and cemented bonds using deformation consistency and energy equilibrium equations. Cement content and cement type are considered in a model as two main parameters. Based on the proposed method, the behavior of cemented soil with different cement types is predicted for conventional triaxial test condition. Porepressure developed during undrained loading besides volumetric strains in drained condition are also modeled according to this framework. Comparison of model results with experimental data indicates its reasonable accuracy.
P Headarian, S. M. Fatemi Aghda, Ali Noorzad,
Volume 7, Issue 2 (3-2014)
Abstract

Tunneling in complex geological and geotechnical conditions is often inevitable, especially in urban areas. The stability analysis and the assessment of ground surface settlement of a shield tunneling are of major importance in real shield tunneling projects. The objective of this research is to determine the collapse pressure of a shallow circular tunnel driven by a Tunnel Boring Machine (TBM) of the Earth Pressure Balance (EPB) type.  In this study, analytical methods and three-dimensional numerical modeling with ABAQUS software were implemented to examine the effect of face pressure on the behavior of the tunnel. The parameters were calculated using data from Karaj subway-line 2 as a case study. The analytical method used in this study is Leca-Dormiex which is based on limit analysis theory.  The method is based on a translational multiblock failure mechanism.  Also, elastic and Mohr-Coulomb constitutive model have been used for soil behavior. The results of analytical method and numerical modeling were then compared. Based on the obtained results, face pressure assessed from the analytical method of Leca-Dormiex (upper bound) is the minimum pressure that can be implemented on the face tunnel. It also indicates that with implementation of suggested pressure of analytical method, Karaj subway face tunnel is stable and consequently execution of pre-consolidation methods in this section of the tunnel does not seem to be necessary
Amir Hamidi, Ali Dehghan,
Volume 9, Issue 2 (9-2015)
Abstract

This paper describes triaxial compression tests conducted to determine the effect of fiber inclusion on stiffness and deformation characteristics of sand-gravel mixtures. Tested soil was a mixture of Babolsar sand from the shores of the Caspian Sea and Karaj River gravel. Portland cement was used as the cementing agent and fibers 12mm in length and 0.023mm in diameter at 0%, 0.5% and 1.0% were added to the mixtures. Triaxial tests were performed on saturated samples in consolidated drained and undrained conditions at confining pressures of 100, 200 and 300 kPa. Deviatoric stress-axial strain, volumetric strain-axial strain, pore pressure-axial strain curves with deformation and stiffness characteristics were investigated. Tests results show that fiber addition increased peak and residual shear strength of the soil. Fiber addition resulted in an increase of the maximum positive and negative volumetric strains. In undrained condition, fiber inclusion caused increase in initial positive pore pressure and final suction. It has also been observed that fibers decreased initial tangent stiffness of the cemented sand-gravel mixture.
Reza Ziaie_moayed, Mehrad Kamalzareh,
Volume 9, Issue 2 (9-2015)
Abstract

Collapsible soils could widely be found in central part of Iran and has caused lots of problems for roads and railroads in that region. Appearance of wide cracks in the collapsible soil near the Tehran-Semnan railroad tracks has caused some worries regarding the safety and performance of the railroad. However, due to the high traffic of the railroad, it is impossible to block the road for remedy. Therefore using injection method was found the most suitable alternative to improve the soil along railroad. The results of field and laboratory tests revealed that the injection of lime has better effects on improving soil characteristics than the other materials. It will significantly decrease the collapsibility potential of soil in saturated condition and will cause an increase in loading capacity of soil. Lime injection was suggested as the most appropriate solution for projects with similar geological condition. 
H. Taherkhani, M. Javanmard,
Volume 9, Issue 4 (3-2016)
Abstract

One of the major problems associated with the clayey soils is the swelling potential due to moisture absorption, which results in applying high pressure on the superstructures, and may cause failure or large deformation of the structures. Among the solutions to mitigate the swelling problem of clayey soils is their stabilization using additives. This study aims to compare the effects of three types of additives on the reduction of swelling potential of two types of clayey soils, with two different plasticity indexes. The additives used in this research include two traditional additives namely, cement and lime, and one type of nontraditional stabilizer namely, CBR PLUS nano polymer. These additives were added to the soils in different contents, and the Atterburg limits, and the swelling of the soils were measured at different times after addition of the additives. The results show that the CBR PLUS is more effective in reducing the swelling potential of the soil with high plasticity index, by which, the swelling was reduced by 1500%, while the addition of  lime and cement reduced the swelling about 1000%. For the soil with low plasticity index, the cement is found to be more effective than the lime and CBR PLUS in reducing the swelling potential. The addition of 7% of cement resulted in 1400% of reduction in swelling, against 600% reduction for the addition of the same content of lime. In addition, it is found that the CBR PLUS and cement are, respectively, more effective in reducing the plasticity index of the soil with high and low plasticity index
, Mohamad Ghafoori, Javad Ahmadzadeh, Salameh Afshar,
Volume 10, Issue 1 (8-2016)
Abstract

In tunnelling in soil mass, in groundwater existing mode, liquefaction, elastic displacements and settlement in soils upon the tunnel, are the risks may attack the excavated underground space stability. In this case study that were performed on second line of Mashhad city subway route, information catched from Standard Penetration Test, in situ and laboratorial tests, were used to optimum numerical values search for soil engineering parameters that could optimize the TBM stationing level. In order to this goal attaining, intelligent, numerical and probabilistic methods were used and the reliability of intelligent and numerical methods with the Safety Factors of tunnel stability, investigated simultaneously. The results were denoting the accordance of intelligent models such as Genetic Algorithm (GA) and Multi objective Genetic Algorithm with Finite Element model's output. So these models could be complement of each others in planning and designing of tunnels and using of them advised in tunneling and excavations.


P Naghshin, H Shahir ,
Volume 10, Issue 2 (11-2016)
Abstract

Soil nailing is a prevalent method for temporary or permanent stabilization of excavations which, if it is used for permanent purposes, the seismic study of these structures is important. There are a few physical models, with limited information available, for the study of behavior of soil nailed walls under earthquake loading. Numerical methods may be used for the study of effects of various parameters on the performance of soil nailed walls, and this technique has been used in the current paper. In this research, the effects of various parameters such as the spacing, configuration, and lengths of nails, and the height of wall on seismic displacement of soil nailed walls under the various earthquake excitations were studied. To investigate the effects of the configuration and the lengths of nails on the performance of these structures, two configurations of uniform and variable lengths of nails have been used. To study the effects of the spacing between nails and the height of the wall the spacings of 2 and 1.5 meters and the heights of 14, 20, and 26 meters have been considered. The seismic analysis has been carried out using the finite element software Plaxis 2D. To analyze the lengths' of nails, it was assumed that the safety factors of stability of different models are constant, and the limit equilibrium software GeoSlope was used. After specification of the lengths of nails based on constant safety factor of stability, the deformations of the models under several earthquakes records were analyzed, and recommendations were made on minimizing the deformations of soil nailed walls under seismic loading.


M Moradi , A Hamidi , Gh Tavakoli Mehrjardi ,
Volume 10, Issue 4 (5-2017)
Abstract

Consolidated-drained triaxial compression tests were conducted to compare the stress-strain and volume change response of sands and clayey sands reinforced with discrete randomly distributed poly-propylene fibers. The influence of various test parameters such as fiber content (0.0%, 0.5% and 1.0% by weight), clay content (0%, 10% and 20% by weight), relative density (50% and 90%) and confining pressure (100 kPa, 200 kPa and 300 kPa) were investigated. It has been observed that addition of clay particles to the sands decreased the shear strength of samples. Also, increase in clay content reduced dilation and increased compressibility of the mixed soil. Addition of the fiber to both sands and clayey sands samples improved the shear strength and increased ductility and axial strain at failure point. 


Behrouz Ahmadpour, Masoud Amel Sakhi,
Volume 11, Issue 3 (1-2018)
Abstract

Earth-fill dams stability in steady state seepage condition is very important, especially during earthquakes. Numerical software analyses require accurate and realistic modeling of construction stages. Since earth-fill dams are constructed in different layers, so these conditions should be considered in software modeling to achieve a reasonable design. In this study, an earth-fill dam is modeled in PLAXIS software and the effects of the number and shape of layers are studied in dry and steady-state conditions. Obtained results in static and pseudo-static analyses show that modeling of earth-fill dams with different layers has significant effects on shear stresses and horizontal displacements. For example, horizontal displacements and shear stresses, increase at least 50% and 17% respectively, in comparison with single layer models. According to the obtained results, it can be mentioned that modeling of an earth-fill dam in the layered model and rather in inclined layers are more reasonable
Navid Sohrabi, Mehdi Khodaparast,
Volume 12, Issue 4 (12-2018)
Abstract

Introduction
In many areas of the world, the mechanical properties of soils for utilization of land are not sufficient. For improvement of these lands, soil stabilization such as compacting, installation of nails, elders of piles, mixing soil with lime or cement before or during constructions on the surface or inside of the ground can be useful. Microbially induced carbonate precipitation (MICP), due to its versatility and stable performance, has been recently attracted the attention of many researchers in the field of the geotechnical engineering around the world. MICP is a biological technique that is naturally caused to create a cementation agent, which is known as calcium carbonate or calcite by controlling the metabolism of bacteria. Although there are many biological processes that can be lead to MICP, but the using of urea hydrolysis by bacteria is commonly used more. In this method, aerobic bacteria with the enriched urease enzymes inject into the soil. Hydrolysis of urea occurs when the bacteria speeds up the hydrolysis reaction to produce ammonium and carbonate ions. In the presence of soluble calcium ions, carbonate ions are precipitated and formed the calcium carbonate crystals. When these crystals are formed on a grain of soil or like a bridge between them, they prevent the movement of grains and thus improve the mechanical and geotechnical properties of the soil.
Material and methods
In the present study, the effect of increasing fines on the improvement of Anzali sandy soil, and soil resistance parameters for improving the clean sand and its mixtures with a fine grained cohesive soil and a fine grained cohesionless soil separately in a percentage weight of 30 by MICP and using a small scale of direct shear test (6×6) have been investigated. In the present study the sandy soil was collected from the coast of Bandar Anzali Free Zone and for the preparation of samples of clayey sand and silty sand, Kaolinite clay soils and Firouzkooh broken silt were used, respectively. Anzali sand is poorly graded and had a rounded corner with an average particle size of 0.2 mm, somewhat, sharpening cores are also found in its granulation. In addition, its fine grained content is very small (less than 1%). The Kaolinite clay is also labeled with a liquid limit of 40, a plastic limit of 25, and a plasticity index of 15 as an inorganic clay (CL). The used microorganism in this study is urease positive Sporosarcina pasteurii, which is maintained with the number of PTCC1645 at the Center Collective of Industrial Microorganisms of Iran Scientific and Research Organization. The bacterium was cultured in a culture medium containing 20 g/l yeast extract and 10 g/l ammonium chloride at pH 9 under aerobic conditions in incubator shaker machine at 150 rpm and temperature of 30 °C. The organism was grown to late exponential/early stationary phase and stored at 4 °C before injection in samples. A solution of calcium chloride and urea with a molar ratio of one is also used as a cementation solution. With the direct shear test (6cm×6cm) as a benchmarking of the shear strength in the before and after improvement steps, molds fitted with a shear box made of the galvanized sheet with a thickness of 0.6 mm and it consists of two main parts, the body,  in the middle of which an exhaust pipe was embedded in the injector waste fluid. At the bottom of the samples, a layer of filter paper was placed in order to prevent soil washes, and then all samples with a thickness of 2 cm, with a relative density of 30% at the same weight and height were pressed. In the upper part of the samples, a layer of filter paper is similarly used to prevent the discontinuity of soil particles when injected biological materials are used. Biological solutions are injected from the top to the specimens and allowed to penetrate under the influence of gravitational and capillary forces in the sample and discharge the inhaled fluid from the exhaust pipe. The criterion for determining the volume of the solution to inject into each sample is the pure volume (PV) of soil. The preparation process of the samples was initiated by injection of a PV water unit, followed by a two-layer mixture of bacterial suspensions and cementation solutions, each with a volume of one PV, and then for biological reactions, 24 hours to the sample at laboratory temperature (25 ± 2) is given. After the time of incubation, the solution of cementation is injected into the sample for a period of three days and every 24 hours. The processing time of samples is also considered 28 days. In this study, optical density (OD) was selected as a benchmark for estimating the concentration of bacterial cells in the culture medium, and in all stages of development, and precisely before injection of bacteria suspension into soil samples, it was measured by a spectrophotometer device at 600 nm (OD600) wavelength, which was obtained for all bacterial suspensions in the range of 1.7 to 2 before the injection. To determine the activity of urea bacteria, 1 ml of bacterial suspension was added to nine milliliters of 1.11 molar urea solution, and by immersing the electrode of the electrical conductivity in the solution, its conductivity was recorded for 5 minutes at 20 ± 2 ° C. The rate of urea activity in the pre-treatment stage for all specimens was in the range of 0.8 to 1.23 mS min-1. In order to evaluate the shear strength parameters of soil samples, before and after the improvement operations, a direct shear test was used based on the ASTM D3080 standard. This test was performed for all samples under stresses of 50, 100 and 150 kPa in undrained conditions at a loading speed of 1 mm/min up to a strain of 15%. Also, samples of soil with a moisture content of 7% and a relative density of 30% (as already mentioned) have been restored. SEM analysis was carried out to determine the distribution of sediment between soil particles and EDX analysis in order to identify carbonate calcium sediment formation elements in improved soil samples, by scanning electron microscopy on Anzali sandy soil samples in before and after improvement conditions.
 
 
Conclusions
The effect of the increasing cohesive and cohesionless fines on the bio-treated process of sandy soil is the main subject of this research. For this purpose, three samples of clean sand, sand containing 30% clay and sand mixture with 30% silt in a relative density of 30% were treated with MICP method and their shear strength parameters were evaluated by direct shear test after 28 days of processing. Using the direct shear test and analyses of SEM and EDX data, the results are represented as below:
1.  The microbial sediment of carbonate calcium has greatly improved the resistance properties of all three soil samples.
2. A sample of clayey sand, in spite of a higher improvement compared to the other samples with an average shear strength of 113.7% in comparison to to its untreated state, it has the lowest shear strength among the three improved samples.
3. Increasing the clay content of 30% increases the soil voids. On the other hand, it reduces the friction angle and shear strength of the soil in the pre-treated state and also facilitates easier movement of the bacteria between the pores in the soil. More favorable distribution of sediment calcium carbonate was occurred and, as a result, increased adhesion between soil particles.
4. The increase of cohesionless fine particles creates more bonding points between sand particles and, therefore, calcium carbonate crystals form shorter distances between the soil bridges. As a result, with the end of the improvement process, the shear strength parameters of the sandy soil containing 30% of the silt compared to the clean sand have a higher value.
5. SEM images of the clean sand in both before and after improvement show that the calcium carbonate precipitation occurred with a uniform and thin layer that surrounds sand grains and another part of the sediments formed in the joint of grains.
6. Cube-shaped crystalline sediments confirm that the sediment formed in the soil is a stable type of calcite and that the relative increase in the friction angle of the improvement samples can be attributed to solid particles and multifaceted sediments. Also, the elements of carbon, oxygen, and calcium, which are the main components for the formation of calcium carbonate deposits, have been found in the EDX analysis of improvement sand samples../files/site1/files/124/7sohrabi%DA%86%DA%A9%DB%8C%D8%AF%D9%87.pdf
 
Mohammad Moghadas, Ali Raeesi Estabragh, Amin Soltani,
Volume 13, Issue 1 (8-2019)
Abstract

Introduction
Improving the mechanical behavior of clay soil by stabilization agents is a mean of fulfilling geotechnical design criteria. The method of stabilization can be divided into chemical, mechanical, or a combination of both methods. Chemical stabilization is performed by adding chemical agents such as cement, lime or fly ash to the soil (Bahar et al., 2004). Soil reinforcement is one of the mechanical methods that is used for improving the behavior of soils (Tang et al., 2007). Reinforcement of soil achieved by either inclusion of strips, bars, grids and etc. within a soil mass in a preferred direction or mixing discrete fibers randomly with a soil mass.
Mixing of cement with soil is made a production that is called soil-cement and results in chemical reaction between soil, cement, and water. The compressive strength of soil-cement is increased by increasing the cement content and this leads to brittle behavior or sudden failure. On the other hand, by increasing the cement to soil ratio for cohesive soils, shrinkage micro-cracks may develop in the soil as a result of the loss of water content during drying or hydration of cement. Therefore, if the tensile strength of these materials is not sufficient cracks will develop under loading and damage will be resulted (Khattak and Alrashidi, 2006). Consoli et al. (2003) and Tang et al. (2007) indicated that adding the fiber to soil can prevent from occurrence of these cracks and increases the tensile strength of the soil.
The focus of this paper is on the statistical analysis of the results and development of regression models. Regression relationships are developed based on the experimental results that were presented by Estabragh et al. (2017). These relationships relate the compressive and tensile strengths of the soil to percent of used fiber, cement and curing time.
Material and methods of testing
Unconfined compression and tensile strength tests were carried on unreinforced and reinforced soil, soil cement according to ASTM standards. Samples of soil-cement were made by mixing a clay soil and two different weight percent of cement (8 and 10%). Reinforced soil samples were also prepared by mixing 0.5 and 1 weight percent of Polypropylene fibers with 10, 15, 20 and 25 mm lengths. The dry unit weight and water content of prepared samples were the same as optimum water content and maximum dry unit weight that were resulted from standard compaction test. The compressive and tensile strength tests were conducted on the samples by considering the curing time according to ASTM standards until the failure of the sample is achieved.
Results and discussion
The experimental tests showed that reinforcement of the soil and soil cement increase the peak compressive and tensile strength. The peak compressive strength of reinforced soil is increased by increasing the fiber content at a constant length of the fiber. It can be said that by increasing the percent of fiber, the number of fibers in the sample is increased and contact between soil particle and fibers is increased which result in increase in the strength (Maher 1994). However, by increasing the length of the constant fiber inclusion there will be no significant increase in strength because the number of shorter fiber is more than longer fiber in a specific sample (Ahmad et al., 2010). Inclusion of fibers can greatly increase the tensile strength of clay soil. In addition to reinforcement of soil cement showed the same trend. When fiber is added to soil cement, the surface of fiber adheres to the hydration products of cement and some clay particle. Therefore, this combination increases the efficiency of load transfer from the composition to the fibers which increase the peak strength (Tang et al., 2007). In addition, the tensile strength shows the same trend.
Based on the experimental data on the behavior of a randomly reinforced clay soil and soil cement multiple regression models (linear and non-linear) were developed for calculating the peak compressive and tensile strength (dependent variables) based on the value of the coefficient of determination (R2). The proposed regression models were functions of independent variables including weight percent of fiber, length of fiber (length/diameter of fiber), weight percent of cement, and curing time. Finally, the comparison is made between the predicted results from proposed models and experimental results. In order to investigate the model accuracy, the Root Mean Square Error (RMSE) and Normalized Root Mean Square Error (NRMSE) are used.
 The Multiple Linear Regression models (MLR) was very suitable for the study of the effect of independent variables on the quantitative analytic dependent variable. The NRSME for peak compressive and tensile strength is was 3.59% and 5.11% respectively for these models. Also, the Multiple Nonlinear Regression models (MNLR) had a much lower error than the linear model because of the quadratic equation, the equation will be able to predict the increase and decrease of the output variable in terms of the increase of the independent input variable. Therefore, The NRMSE for peak compressive and tensile strength was 1.02% and 4.04% for MNLR models respectively.
Conclusion
The following conclusions can be drawn from this study:
- The strength of reinforced soil and soil cement is increased by increasing the fiber content.
- Increasing the length of the fibers in the soil and soil cement has no significant effect on increasing the peak compressive strength, but it will be effective in increasing the tensile strength.
- The Multiple Nonlinear Regression models (MNLR) have more accuracy for prediction of output variable (peak strength) because of lower normalized root mean square error../files/site1/files/131/7Extended_Abstract.pdf


 
, , , ,
Volume 13, Issue 2 (8-2019)
Abstract

Introduction
Retaining walls are geotechnical structures built to resist the driving and resistant lateral pressure. In terms of serviceability life, these walls are divided into two groups including short-term structures (temporary), such as urban excavation project, and long-term (permanent) structures, such as Mechanically Stabilized Earth Walls (MSE Walls). Retaining walls are implemented by two main methods including Top-down and Bottom-up. Among the reinforcements applied in the Bottom-up walls, one can name geocells, geogrids, metal strips, and plate anchors. On the other hand, the common reinforcements applied in the Top-down walls are grouted soil nails and anchors and helical (screw) soil nails and anchors.
Plate anchors are burial mechanical reinforcements that have one or multiple bearing plates with a bar or cable to transfer the load to an area with stable soil. Among different types of plate anchor applied in onshore and offshore projects, one can name simple horizontal, inclined, and vertical plate anchors, deadman anchors, multi-plate anchors, cross-plate anchors, expanding pole key anchors, helical anchors, drag embedment anchors, vertically loaded anchors (VLAs), suction-embedded plate anchors (SEPLAs), dynamically-embedded plate anchors (DEPLAs) like Omni-max and torpedo anchors, and duckbill, manta ray and stingray anchors.
The present research reports the results from physical modeling of plate anchor retaining walls under static loading. The evaluation parameters in this work include the geometry, dimension, and reinforcement configuration of plate anchors on wall stability. PIV technique was employed to observe critical slip surface. It is worth mentioning that PIV is an image processing technique firstly used in the field of fluid mechanics to observe the flow path of gas and fluid particles. This method was used in geotechnical modeling by White et al. (2003) and few reports are already available about its application to observe wedge failure of mechanically stabilized retaining walls.
Material and methods
To carry out tests at a laboratory scale, a dimensionality reduction ratio of 1/10 was applied. Thus, all dimensions of the designed retaining wall were divided by 10. As a result, a retaining wall with a height and length of 3000 mm was reduced to a wall with 300×300 mm2 dimensions. To build a retaining wall, a chamber was designed with a length, width, and depth of 1000 mm, 300 mm, and 600 mm, respectively.
The soil used in all tests was the sandy soil supplied from Sufian (in Eastern Azerbaijan, Iran). According to the Unified Soil Classification System (USCS), the soil is classified as poorly graded sand with letter symbol ‘SP’.
To create a perfect planar strain condition and prevent any friction between the footing and the lateral sides of the test box, the footing length was selected 1 mm smaller than the 300 mm width of the test chamber. Therefore, the length, width, and thickness of footing were selected as 299, 70, and 30 mm, respectively.
The length and diameter of applied tie rods were respectively 300 mm and 4 mm, which are the smaller scales of 3000 mm length and 40 mm diameter tie rod. The two sides of the tie rods were threaded to plate anchors and wall facing. Four polished square and circular anchor plates with two different areas were used. The area of small and medium circulars are respectively equivalent to the area of small and medium square plates.
Because no post-tensioning occurs in these plate anchors, the horizontal and vertical distances were both selected as 1500 mm. By applying a dimensionality reduction coefficient of 1/10, a 150 mm center-to-center distance was obtained for reinforcements in the wall. Accordingly, three applied reinforcement configurations including 5-anchor, diamond, and square configurations were used.
To construct permanent retaining wall facing, prefabricated or precast concrete blocks with a thickness of 300 mm were used. Wood (2003) conducted a dimensional analysis and introduced four types of material with different thicknesses for a 300 mm concrete facing in laboratory modeling. Accordingly, a 0.9 mm thick aluminum plate was used in the experiments performed in the present work.
Results and discussion
With an increase in dimensions of anchor plates, an increase in bearing capacity of footing and a decrease in horizontal displacement of the wall are noticed. By comparing the 24 mm footing settlement in three configurations, with changing dimension of the plates from C1 to C2 and S1 to S2 respectively, 63% increases are observed in bearing capacity of the wall.
An increase in anchor plate dimensions results in a significant decrease in wall displacement. Therefore, changing the plates from C1 to C2, S1 to S2 leads to 24% and 28% declination in wall displacement.
By changing reinforcement configuration from square to diamond, diamond to 5-anchore, and square to 5-anchor, respectively, 27%, 31%, and 67.5% increases in bearing capacity for small plates, 9.2%, 27%, and 38% for medium plates are achieved using a comparison of the final loading steps in experiments. An analogy of percentages shows that a decrease in the effect of changing the reinforcement configurations on the bearing capacity of the wall with an increase in plate anchors dimensions is reached. 
Conclusion
In the present research, a set of laboratory experiments were carried out to evaluate the stability of mechanical retaining walls reinforced with plate anchors with different geometries (square and circular), sizes (small and medium), and configurations (diamond, square, and 5-anchor). The main results of the present work can be outlined as follows:
• The maximum bearing capacity is for the 5-anchor configuration since it has one more reinforcement. After 5-anchor configuration, the diamond configuration results in a higher bearing capacity compared to the square configuration.
• Circular anchor plates compared to square anchor plates provide a higher wall stability and in the most of the experiments lead to higher bearing and lower displacement in the wall.
• Wall displacement in a diamond configuration with one less reinforcement shows a little difference with 5-anchor configuration. The maximum wall displacement occurs in a square configuration and more wall swelling is observed in the wall middle height due to inefficient anchors configuration in the wall.
./files/site1/files/132/2Extended_Abstracts.pdf
Mohammad Emad Mahmoudi Mehrizi1, Younos Daghigh, Javad Nazariafshar,
Volume 14, Issue 1 (5-2020)
Abstract

The increasing rate of construction activities in urban areas is accompanied by excavation in the vicinity of existing structures and urban utilities. This issue has highlighted the importance of constructing protecting structures in order to control displacements and prevent damage to structures and their neighboring area. Among the important widely used wall stabilization techniques, one can name nailing and grouted anchors. However, these methods suffer some drawbacks such as annoying noise and vibration during the drilling, implementation difficulties below the water table, grouting problem, installation of strands and bars in the borehole in porous and collapse soils, and long curing time for the grout of post-tension anchors. Since the helical anchor method lacks many of the mentioned problems, it is now widely used in many applications.
In the present work, a laboratory model of helical anchor stabilized wall is presented and evaluated. For this purpose, four types of anchors at 20° back slope are designed in a sandy soil and the effect of helix configuration (in term of its diameter and number of blades) is investigated. Considering the laboratory scale of the designed model, the results obtained using helical anchor were compared with numerical results of soil nailing wall by applying the particle image velocimetry (PIV) analyses.
Material and methods
The test box designed in this work is made of a metal plate with a thickness, length, width, and depth of 1.5 mm, 100 cm, 60 cm, and 30 cm, respectively, and a Plexiglas in its opposing side with a thickness of 50 mm. The soil used in the experiments was the dry sand of Soufian region in east Azerbaijan province of Iran. The soil is classified as SP according to USCS classification. The helical anchors were fabricated by welding the helical pitches to a metal shaft. The end part of the shafts is screw threaded such that to fasten a bolt to them.
To start the experiment, the empty box was completely cleaned using the detergents to remove any pollution or soil on the Plexiglas and metal surface. Afterward, the sandy soil was poured on the wall floor and the facing was placed inside the box vertically. Again, the sandy soil was poured from both sides of the facing up to the installation height of the helices. Helices were installed in the assigned holes and their angle was adjusted through the pre-fabricated stencils. The soil height was increased up to the next row assigned for helices installation. These steps were repeated until reach the wall crest. After preparation of the physical model, its behavior during the preparation must be modeled. We first filled both sides of the model and then modeled the stability behavior of the helical anchor wall through excavating its facing opposed side. Overall, the wall was built through eight excavation steps.
Results and discussion
The maximum displacement is related to the anchor type 1, which does not have enough bearing capacity under surcharge conditions. By changing the anchor type and increasing the number of helices, shear strains and their expansion in the wall back decline. The decrease in displacement rate by changing the anchor from type 1 to type 2 is 18%, which is due to the low bearing capacity of type 2 anchor compared to the type 1 anchor. Increasing the number of pitches from one to two (changing the type 1 anchor to type 3 anchor) showed a considerable decrease (i.e., 43%) in displacement rate. Increasing the number of pitches from 1 to 3 (changing the anchor from type 1 to type 3) resulted in a 62% decrease in wall crest displacement. This displacement decrease rate seems to decline with an increase in the number of helixes.
The displacement rate for all four anchors is almost similar in two excavation steps, which probably is because of the need for displacement for activation of the anchors. One strategy to deal this issue in the sensitive projects and control the displacement is to apply post-tension helical anchors. Then, in stages 4 to 6, the displacement was almost constant due to four main reasons including wall rigidity, the presence of reinforcements, formation of pre-step displacement-induced tension force, and enough capacity of anchors to face with more displacement. In stages 6 to 8, type 1 and 2 anchors showed growing displacements due to the reduction and ending the wall rigidity and lower bearing capacity. In type 3 and 4 anchors, the maximum displacement was related to 4 initial stages. In type 1 and 2 anchors, which have two helical plates, almost a similar behavior was observed until stage 6 of excavation, but eventually type 3 anchors showed better performance because of higher bearing capacity to overall displacement.
Conclusion
In the present study, a physical model was designed to investigate the effect of helical anchors’ geometry on displacement rate of helical anchor wall and compare it with a nail wall. Overall, comparing the results obtained by conducting these experiments on a helical anchor stabilized wall and a nail wall revealed that:
- Wall crest displacement is affected by the diameter and number of helices and decreases by an increase in bearing capacity.
- The increase in the number of pitches from one to two (single-pitch to double-pitch anchor) has a higher effect on displacement control compared to the case of changing the double-pitch to triple-pitch anchor. So, it can be stated that a further increase in the number of anchor pitches results in a declined performance of the anchors.
- All anchors need a slight displacement for activation. This issue cannot be resolved by changing the type of helical anchors. Hence, when the displacement required for activation of the anchors exceeds the allowable wall crest displacement, use of post-tensioned helical anchors is recommended.
- A comparison between nailing and helical anchor results revealed that the relative density of the wall stabilized with the helical anchor is less than that of the nail wall; and wall crest displacement in the helical anchor wall was very lower than that of nail wall. Thus, the helical anchor wall stabilization is preferred when other economic and technical requirements are met.
Maziar Hosseini, Majid Taromi, Mahdi Saeidi, Vahid Soleimani, Mehdi Soltani Negar,
Volume 14, Issue 4 (12-2020)
Abstract

Introduction
Series A of coarse-grained alluvial deposits of Tehran are extended in eastern and north-eastern areas of Tehran. Analyzing and studying of these alluvial deposits from a geological point of view as well as their creation time and general characteristics such as the deposits’ mineral types, their source, and formation conditions, gives a better point of view to geotechnical engineers about exploring their characteristics as well as geotechnical aspects in underground structure design, excavations, and foundation design processes. On the other hand, in order to analyze stability, estimating the factor of safety and the seismic design of these structures, considering their location, which is in Tehran with a high seismic hazard area, the necessity of knowing the exact mechanical and dynamic properties of Tehran's alluvium is felt more than ever.
Material and methods
Due to the grain size of Tehran’s coarse-grained alluviums (series A) as well as high level of cementation of them, it is impossible (or maybe so difficult) to make undisturbed samples in order to do experiments. Such that it is excavated 23 boreholes with 30 to 140 meters depth as well as 17 test wells with 20 meters depth in an area which was extended in 10 kilometers in long which were located in Tehran’s No. 13 and No. 14 districts (as it can be seen in Figure 1). During the excavation of the entrance ramp and tunnel of eastern highway of Tehran, in-situ tests have been done in different sequences. Since it was important to investigate real behavior of these alluviums, different in-situ tests such as plate load test, in-situ shear test, pressuremeter test, and downhole test have been done as well as many laboratory and field tests. Furthermore, (1) X-Ray Diffraction (XRD) and (2) X-ray Fluorescence (XRF) as well as (3) Scanning Electron Microscopy (SEM) methods, have been used to explore the type of minerals and those used in cementation.
 
 
 
 

(ب)
 
 
 
Figure 1. a) Geological plan and the location of boreholes and test wells in the alignment of East Tehran Freeway
Results and discussion
Based on the results of XRD tests, it is quite clear that the largest weight percentages of tested samples are lime and silica.
Calcium and magnesium levels-as the high-power cations in flocculation process-in soil sample No. 1 (soil with high cementation level) are much more than soil sample No. 2 (soil with moderate cementation level).
This is the cause of high cementation level of soil sample No. 1 comparing with soils sample No. 2. A rapid increase in stress level can be seen in in-situ shear test results, in low shear displacements, up to reaching a maximum of τp (peak point) and afterwards reduction in shear stress with softening behavior.  
Cohesion and shear strength levels also increase by increasing the depth. According to the plate load tests results, an increase in soil modules changes can be seen in different depths by depth increasing.
Large tendencies to increase in volume and dilation can be seen in under shear load cemented soils, after applying a primary compression on them. A brittle behavior with the occurrence of a certain peak can be seen in cemented samples. The significant increase in strength is directly related to the severe dilation rate, which can be seen in cemented samples results.  The shear strength would be decreased, if this cement is broken during the particles’ displacements.
The results of downhole tests are shown in Figure 2. According to this figure, it has been explored that Vs,30 is about 600 m/s in moderate cemented soils while it is about 850 m/s in highly cemented soils.  Because of the homogeneity and uniformity of sedimentary deposits, shear wave velocity is increasing due to the higher density of the layers and high level of cementation in both of the soil types. However, this increase is not significant at depths above 25 meters.
Conclusion
Based on the results, cementation level of the eastern coarse-grain-alluvium of Tehran is moderate to high and minerals used in cementation of this type of soil are generally carbonated and especially calcite.
Investigating the level of cementation of soil as well as the results of chemical analysis and in-situ tests, it can be found that the strength and deformation parameters of the soil are directly related to the degree of its cementation.
Based on the obtained results, the deformation modulus increases by about 25%, the cohesion by about 55% and the shear wave velocity by about 30% with increasing the degree of cementation (Table 1).
Increases of these parameters are directly related to depth. However, the cementation level does not significantly affect the internal friction angle of the soil.
Table 1. Average results of in-situ shear tests
Deformation Modulus (MPa) Peak Friction Angle (deg.) Cohesion
(kPa)
USCS Depth
(m)
Sample
50-60 39 30-35 GW-GM 5 Moderately Cemented Soil
(M.C. Soil)
75-85 41 50-60 SP-SC 10
85-90 41 50-60 GW-GC 15
95-105 41 50-60 GW-GC 20
60-70 39 35-40 GW-GM 5 Highly Cemented Soil (H.C. Soil)
75-85 39 50-60 GW-GC 10
110-120 42 65-75 GW-GC 15
125-140 41 110-120 GC 20
 
 
Shaham Atashband, Mohsen Sabermahani, Hamidreza Elahi,
Volume 15, Issue 2 (9-2021)
Abstract

In coastal industrial areas, in addition to the presence of loose soil, sulfate attack on soil improvement elements, such as soil-cement, is a double problem. Generally, the use of type V cement is recommended as one of the methods to reduce the detrimental effects. Considering the limited resources of this type of cement, firstly to determin the relationship between the cement content and the strength obtained in sulfated environments is one of the important engineering question in this field and secondly, as an alternative option, the use of type II cement which is more available, is suggested to use in combination with suitable additives. The present study pursues the above two goals by making cylindrical soil-cement specimens with sand, water and Portland sulfate resistant cements. Sodium sulfate is used as the sulfate in soil and water. In the research, first of all, the relation between type V cement content and unconfined compressive strength of soil-cement is obtained at 0% to 5% sulfate concentration, which results in a cement content of 400 kg/m3 completely limited the sulfate attack effects in a sulfate concentration of 2%. Secondly, the combination of type II cement with barium chloride and hydroxide was tested. The related results show that the combination of type II cement with barium chloride and hydroxide had higher strengths, about 2.7 to 3.3 times, respectively (in 362 days), than the soil-cement containing type V cement../files/site1/files/152/%D8%A2%D8%AA%D8%B4_%D8%A8%D9%86%D8%AF.pdf
 
 
Mahmood Reza Abdi, Mahdi Safdari Seh Gonbad, Hoshmand Tirandazi,
Volume 15, Issue 3 (12-2021)
Abstract

In current paper the effects of surface unreinforced / reinforced sand layers coupled with and without single and group sand columns on the bearing capacity – settlement behavior of soft clays has been investigated. In this regard behavior of soft clay, clay + unreinforced / reinforced sand layer, clay + single / group sand piles and clay + unreinforced / reinforced sand layer + single / group piles samples has been assessed. Geogrid was adopted as the reinforcement, a circular plate 5cm in diameter as the loading surface and C.B.R. apparatus as the loading system. Results show that employing unreinforced / reinforced sand layers at a settlement ratio of 5% improves bearing capacity by 4 t0 7 times the soft clay. Coupling the surface unreinforced / reinforced sand layers with single / group sand piles further increases the bearing capacity by 7 to 9 times that of soft clay.

./files/site1/files/%D8%B9%D8%A8%D8%AF%DB%8C.pdf
 
, , Morteza Jiriaei Sharahi,
Volume 15, Issue 4 (12-2021)
Abstract

Soil stabilization and reinforcement has long played an important role in civil engineering, especially in geotechnics, and over time and the need for a more robust and stable ground to withstand gravity and higher shear forces, has become particularly important. Also, in recent years, with the entry of the environment into the construction industry, with the aim of reducing the adverse effects of industrial waste and construction waste on people's living environment and preserving the environment for the future, in many cases reduces the economic costs of projects. In this research, granular soil is reinforced in two loose and semi-dense states using a waste material called ethylene-vinyl acetate (EVA). The experiments were performed without adding moisture, by weight percentage method and using CBR device. The results show that soil resistance increases significantly with the use of these additives and its effect on soil increases with decreasing soil specific gravity. Also, the optimal amount of additives in loose and semi-dense state is 2% additive and 1% additive, respectively.


./files/site1/files/%DA%86%DA%A9%DB%8C%D8%AF%D9%87_%D9%85%D8%A8%D8%B3%D9%88%D8%B7_%D8%A7%D9%86%DA%AF%D9%84%DB%8C%D8%B3%DB%8C_%D8%B3%D9%87_%D8%B5%D9%81%D8%AD%D9%87_%D8%A7%DB%8C.pdf
Prof. Amir Hamidi, Mr. Mahdi Sobhani, Ms. Farzaneh Rasouli, Ms. Marjan Sadrjamali,
Volume 16, Issue 1 (5-2022)
Abstract

The goal of this study was improvement of sandy soil using a combination of polystyrene foam container waste and Portland cement. For this purpose, Babolsar sand was used as the base soil. Strips of disposable polystyrene foam container waste in “chips” of 50 ´ 5 mm and 50 ´ 10 mm were added to the soil at 0.0%, 0.1%, 0.2% and 0.3% by weight along with 3% Portland cement at a relative density of 70%. All samples were cured for 7 days under saturated conditions and then tested using a large-scale direct shear apparatus. The results showed that, in both cemented and uncemented samples, the addition of foam chips increased the cohesion and internal friction angles, which increased the shear strength of the soil. At higher percentages and using larger-sized foam chips, the shear strength increased even more. In uncemented samples, the stiffness did not change with the addition of foam chips, yet the final dilation of the samples decreased. In cemented samples, both the stiffness and softening behavior after the peak strength point decreased. The final dilation of the cemented samples increased at higher foam chip contents and for the larger sized chips. The results of numerical analysis showed that the use of foam chips increased the safety factor of a slope improved in this manner. It also was found that the foam chips with a lower length-to-width ratio had a greater effect on increasing the safety factor of the tested slopes.

Page 1 from 2    
First
Previous
1
 

© 2024 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb