Search published articles


Showing 10 results for Finite Element

Ali Fakher, Hamid Zare, Ali Farhadi,
Volume 7, Issue 1 (8-2013)
Abstract

In this study using finite element procedure was used to simulate the dynamic behavior of reinforced soil walls, to evaluate their dynamic response on all types of deformation modes, different mechanisms of failure detection and identification of parameters in each of the modes and the mechanisms. Detailed numerical modeling, behavioral models and materials were described and Dynamic response of the physical model has been validated experimentally. Parametric study has been of the wall height of 5 meters by the effective parameters such as hardness, length to height ratio, the vertical reinforcement, wall height, and acceleration inputs. Three modes of deformation were observed. The study showed that occur bulging deformation mode while the use of flexible reinforcement and occur overturning deformation mode while the use of stiffness reinforcement. Stiffness reinforcements have the most effective in changing the type of deformation. Length to height ratio of reinforcements has the minimum effective in changing the type of deformation.
M Taremi, A Eftekhari, M Saeedi,
Volume 9, Issue 1 (6-2015)
Abstract

This paper presents a case study of the instability mechanism, to verify and reinforcement method adopted construct collapsed zone of Sabzkuh water conveyance tunnel in southwest Iran. The instability problems were encountered during tunnel excavation due to the failure, changes in stress field lead to deformation causing dilation and increasing the permeability of sand and gravel layers, local fault gouge zones, landslide and in turn significant reduction in shear strength and collapse in tunnel. IPE Arch Support Technique (IAST) was, used for T1 part of Sabzkuh tunnel zone in order to reinforce the ground around tunnel and to cross the zone falling. In this study, Finite Element Method was employed for the quantitative reinforcement effect with deformation modulus of ground, IPE length and size. As a result, the settlement increases as length increases and decreases with the increase of the deformation modulus of ground and IPE size.  
P Naghshin, H Shahir ,
Volume 10, Issue 2 (11-2016)
Abstract

Soil nailing is a prevalent method for temporary or permanent stabilization of excavations which, if it is used for permanent purposes, the seismic study of these structures is important. There are a few physical models, with limited information available, for the study of behavior of soil nailed walls under earthquake loading. Numerical methods may be used for the study of effects of various parameters on the performance of soil nailed walls, and this technique has been used in the current paper. In this research, the effects of various parameters such as the spacing, configuration, and lengths of nails, and the height of wall on seismic displacement of soil nailed walls under the various earthquake excitations were studied. To investigate the effects of the configuration and the lengths of nails on the performance of these structures, two configurations of uniform and variable lengths of nails have been used. To study the effects of the spacing between nails and the height of the wall the spacings of 2 and 1.5 meters and the heights of 14, 20, and 26 meters have been considered. The seismic analysis has been carried out using the finite element software Plaxis 2D. To analyze the lengths' of nails, it was assumed that the safety factors of stability of different models are constant, and the limit equilibrium software GeoSlope was used. After specification of the lengths of nails based on constant safety factor of stability, the deformations of the models under several earthquakes records were analyzed, and recommendations were made on minimizing the deformations of soil nailed walls under seismic loading.


H H.lavasani ,
Volume 10, Issue 5 (7-2016)
Abstract

With regard to the increase of computing power in the past decades, finite element methods have been used to obtain the graphs of rotational moment curves which reflect non-linear effect in connections response. Several common semi-rigid connections are modeled and their behavioral properties are briefly reviewed, then the details related to a new semi-fixed connection have been provided. The behavioral properties like hardness, ultimate capacity and ductility are investigated and compared to other simulated connections. To perform non-linear analyses of connection, finite element software ABAQUS is used. In this simulation, it has been tried to have inter-component interactions according to reality as much as possible. Bolted connections are modeled exactly and the interaction among the bolt surface and hole is modeled as a hard friction with friction coefficient 0.3 with the ability of separating after loading. Also, fillet welds are modeled as a prism with triangular section. Where a groove weld is applied, since the strength in this type of welding is like base metal, two connection parts are stuck together. To mesh the element, C3D8R element is used. The proposed connection n1 has the most rigidity values among semi-rigid connections. Reducing the number of connection bolts has more reducing impact on connection rigidity value, so that with the half thickness of upper and lower sheets, rigidity rate is reduced only 9%, but with the half number of bolts, rigidity rate is reduced about 64%. Also the connection n3 have lowest rigidity rate and its rigidity amount is in the class of bolted connection in seat angle to web angle.


Sassan Narimannejad, Alireza Jafari-Nedoshan, Ali Massumi, Abdollah Sohrabi-Bidar, Ali Ghanbari1,
Volume 12, Issue 2 (10-2018)
Abstract

Introduction
Local site conditions considerably influence all characteristics of the ground strong motion including the domain, frequency content, and duration. The level of such an effect could be considered as a function of geometry, properties of the materials embedded in the underlying layers, the site topography, and properties of excitement. Site effect fall into two categories: a) the effect of the surface soft layers triggered by the shear velocity differences between the soil layers and b) the surface and subsurface topography effects that lead to the wave reflection and refraction based on the site geometry, and subsequently enhance the level of amplification.
Since most cities have been constructed in the vicinity of or on sedimentary basins, geotechnical earthquake engineering devotes particular attention to effects of the sedimentary basins. Basin edge curvature deposited with soft soils are capable to trap the body waves and generated surface waves within the deposit layers. Such waves could create stronger and lengthier vibrations than those estimated in a 1D analysis that assumes the shear waves to be vertically propagated.
Although critically important, the 2D effect of the site has not been included in seismic codes and standards of the world. This might be due to the fact that the site effect depends on a number of parameters such as the site geometry, the type of wave excitement, properties of the materials, etc. that in return make it almost out of the question to make predictions about the effect. This study was an effort to compare the responses of four sedimentary basins with hypothetical geometries of rectangular, trapezoidal, elliptical, and triangular shapes in order to examine the effect of the geometrical shape of the basin on its responses and the extent of the response sensitivity to the excitation frequency of the wave. The study assumed the edge to depth proportion to be both constant and equal in all four basins so that the effect of the geometrical shape could be equally examined and compared in all four basins.      
Material and methods
In order to validate the results of the sedimentary basin modeling, firstly, ABAQUS finite element software was used to create a free field motion of a semi-circular alluvium valley in accordance with Kamalian et al. (2006) and Moassesian and Darvinsky (1987).  Then, the results from the model were compared with those from the above mentioned studies. The following descriptions are to present the model in details.
To evaluate the geometrical effect of the sedimentary basin on its response, the authors relied on the software to examine four sedimentary basins with the fundamental frequency (2.04 Hz). The basins enjoyed rectangular, trapezoidal, elliptical, and triangular geometrical shapes with a constant edge to depth proportion (49m to 300m respectively). The implicit method was also applied to perform the dynamic analysis. The materials were all viscoelastic and homogeneous. The soil behavior/treatment model was considered to be of a linear nature.  The Rayleigh damping model was used to specify the damping level. The soil element was a plane strain and SV waves (the Ricker wavelet) were used for seismic loadings in a vertical dispersion. The side boundaries (right and left) of the model were of a combinational type (viscous and free field boundaries); the down side boundary was composed of viscous. To achieve higher levels of wave absorptions, heavy columns were used as the free filed columns.
Next, it was the time to conduct the 1D analysis of the site. Three waves were in use in order to examine the effect of the frequency content of the excitation load on the basin response: 1) a wave with the dominant frequency of 1Hz that was out of the frequency range of all basins (2.04 Hz), a second wave with the dominant frequency of 2Hz that was close to the fundamental frequency of all basins, and a third wave with the dominant frequency of 4Hz. The waves were applied to a 2Dmodel. The results were compared with those obtained from a 1Dmodel in terms of the timing.
Then, the basin responses to all three waves (1, 2, and 4 Hz) were subjected to an individual analysis in order to examine the sensitivity of each basin response to its geometrical shape. Results indicated that while the responses of the rectangular and trapezoidal basins were significantly more sensitive to the excitation frequencies, the elliptical and triangular basins showed more stable behaviors to such frequencies. The final stage of the study was dedicated to examine the site 2D effect during the ground motion.
Results and Conclusions
According to the results of the present study, it could be suggested that the geometrical shape of the sedimentary basin has a significant effect on the responses of the field of seismic waves and that it could result in so different responses from the ones attained after a 1D analysis of the site. In addition, the pattern of the seismic waves’ responses is highly dependent on the geometrical shape and the frequency content of the seismic load. Also, the location where the maximum horizontal acceleration occurs along with the sedimentary basin depends on the excitation wave and varies accordingly. Further, it could be suggested that the site 2D effect results in both considerable amplification and an increase in the length of ground motion.
The results of the 2D analysis showed remarkable differences with their 1D counterparts: a 1.45 larger response for the rectangular basin, a 1.28 larger response for the trapezoidal basin, a 1.22 larger response for the elliptical basin, and a 1.19 larger response for the triangular basin.
With the frequency of 1 Hz where the excitation frequency is out of the basin range (i.e. the excitation frequency is below the lowest frequency of basin), the sedimentary basin did not show any signs of amplification and chaos (unlike two other frequencies); instead, it was a cause for de-amplification.
The frequency of 2 Hz that is subject to resonance resulted in amplifications (absent in 1D analysis) and there are traces of a reduction in the acceleration responses near to the edges of the basins. The proportion of the amplification (in the center of the basins) in 2D to 1D analysis was 1.4 for the rectangular basin, 1.28 for the trapezoidal basin, 1.22 for the elliptical basin, and 1.15 for the triangular basin.
 
Prof. Seyed Amirodin Sadrnejad, Dr. Hasan Ghasemzadeh, Mr. Ahmadali Khodaei Ardabili,
Volume 12, Issue 5 (12-2018)
Abstract

In a perforated well, fluids enter the wellbore through arrays of perforation tunnels. These perforations are typically distributed in a helical pattern around the wellbore. Available numerical models to simulate production flow into cased-and-perforated vertical wells have complicated boundary conditions or suffer from high computational costs. This paper presents a simple and at the same time efficient finite element model to simulate flow around a well with helically symmetric perforations. In the proposed model, by taking advantage of the symmetry, only a thickness of perforated interval containing a single perforation tunnel needs to be meshed. Angular phasing between adjacent perforations is considered by applying periodic boundary conditions on the upper and lower boundaries of the representative reservoir thickness. These boundary conditions involve periodic-pressure and periodic-velocity parts. Unlike the periodic-pressure part, the method of imposing the periodic-velocity condition within a single-variable flow problem is rather vague. In this regard, it is proved that in the proposed model, periodic-velocity condition is automatically satisfied in a weak sense. The accuracy and the computational efficiency of the proposed model are verified through comparison with available models. The model results, in terms of skin factor, are compared with the common semi-analytical model as well, and good agreement is obtained. The proposed model can readily be used as a numerical tool to study inflow of wells with helically symmetric perforations.
 


Ali M Rajabi, Alireza Sajdeh,
Volume 13, Issue 4 (12-2019)
Abstract

Introduction
Concrete faced rockfill dams have been considered in recent years more than other types of dams due to their low dependency on the bed and the shape of the valley, as well as the simpler construction technology. In this regard, rockfill dams are a suitable substitute for embankment dams because of higher stability of the body and the availability of rock aggregates. On the other hand, because the permeability of rock aggregates is much higher than other materials, different methods are used to seal these types of dams. One of these methods is the use of non-impermeable concrete facing in the upstream of these dams. This particular type of gravel dams is called Concrete-Faced Rockfill Dams (CRFD). In this study, a contact element with a definition of elastic-plastic failure in the modeling process is proposed to simulate the surface separation and re-contact of the concrete face with the rockfill surface of the dam.
Method
In this paper, behavior of a concrete faced rockfill dam under earthquake loads is investigated. For this purpose, near-field earthquake records with focal depth lower than 15 km (for example Tabas earthquake 1978, M=7.4, and San Fernando earthquake 1970, M=6.6) are used. Moreover, to study the dam behavior under dynamic loads, interaction between concrete face and rockfill part of the dam is investigated and finally, some parameters including displacement, absorbed energy and base shear are evaluated. So, finite element method and Abaqus software is used for the study. Verification of the models is carried out using the results of previous researches by conducting modal analysis and determining natural vibration period. Then, the interaction between the concrete face and rockfill part as well as the effect of water level changes in stability of dam under dynamic load is investigated. Concrete behavior is simulated using concrete damaged plasticity. Therefore, concrete density, compressive strength and tensile strength and elasticity modulus are 2350 kg/m3, 25 MPa, 3 MPa and 29 GPa, respectively. Poisson’s ratio is assumed to be 0.2. Furthermore, 4-node shell elements are used to simulate concrete face and Drucker-Prager constitutive model is used to define rockfill material behavior.
The density and Poisson’s ratio for 2B, 3C and 3B layers are 2150 kg/m3 and 0.35, respectively. The shear modulus values for these layers are respectively 8.93, 2.89, and 3.85 GPa. In order to perform the simulation, the part of the dam structure beside the bed rock and the surrounding rock is considered as fixed bearing, and only the rockfill part and concrete face of the dam is simulated. Based on this assumption that the bed is rigid, there is no need to consider the dam foundation. This method is frequently used in literature review.
All the surfaces of the dam and bed rock are considered as fixed bearing to simulate the real condition where the dam is attached to bed rock and the surrounding rock. The interaction between dam layers is defined as tie. For defining the interaction between rockfill body and concrete face, tangential and normal contacts are defined using penalty method with friction coefficient equal to 0.5. In the next step, the model is meshed using 4-node shell elements for concrete face, 8-node brick and 4-node pyramid solid elements for rockfill body. Rayleigh damping is used to simulate the structure damping. The effective length of the dam reservoir has been determined by conducting several analyzes, so that the minimum required length for reservoir is reached in order to decrease the number of elements of the model.
Results and discussion
1. Interaction between concrete face and rockfill body
The results show that the increase of friction coefficient between concrete face and rockfill part from 0.5 to 0.7 has not affect the displacement of dam crown along the earthquake direction. However, when the concrete face is fixed to the rockfill part, significant changes are induced in dam crown displacement time history. In all cases, the deflection due to the dam weight is increased when the concrete face is attached to the rockfill body. The reason can be attributed to the tied interaction between these layers which results in similar deflection of concrete face with rockfill body and higher deflection of concrete dam crown. However, after the application of earthquake load, the displacement of the dam crown decreased in both analyses when tie interaction is defined between concrete face and rockfill body. In this study, due to the very high volume of analysis and its timeliness, it was not possible to examine the dam behavior in the free vibration regime, and therefore, it is not possible to assume the last displacement values at the end of analyses as the permanent displacement of dam. Figure 1 shows the relative displacement of the dam for the two selected earthquakes with a friction coefficient equal to 0.5 between the concrete face and the gravel body. According to Figure 1, the maximum displacement induced by the earthquake is related to Tabas and then, San Francisco earthquake. Furthermore, the high energy content of the Tabas record has been more effective in inducing greater displacement than the other record.
 
Figure 1. Lateral displacement of dam crown relative to the dam base for the selected earthquakes; Tabas and San Fernando.
The results also indicate that when the friction coefficient between concrete face and rockfill body is 0.5, the lowest damage occurs in the dam compared to that happens when friction coefficient is 0.7 or when the surfaces are tied. When the tied surfaces are used, the most damages takes place in concrete face, since all rockfill body displacement transmits to concrete face which results in much more concrete damages compared to the other interaction cases.
2. Effect of water level in reservoir on dam behavior
In this section, the effect of water level on seismic behavior of dam is investigated. For this purpose, the dam reservoir is analyzed in three cases including empty, half full and full (90% of dam height). Each study cases are examined under San Fernando and Tabas earthquakes. Figure 2 shows the relative displacement of dam crown in the three water level case for San Fernando and Tabas earthquakes.
 
Figure 2. Relative displacement of dam crown in three water level cases of empty, half and full for (a) Tabas and (b) San Fernando earthquakes
According to Figure 2, for both earthquakes, the dam crown displacement along the earthquake direction is significantly increased by increasing the water level, so that the maximum displacement in full case is 50% higher than empty case.
Conclusion
In this study, using the finite element method and simulation by Abaqus, the seismic behavior of concrete face rockfill dams has been investigated. For this purpose, the verification is firstly carried out using previous research results in literature. In the next step, nonlinear dynamical analysis is carried out, taking into account large displacements for the models under the earthquake record acceleration. The results illustrate that increasing the friction coefficient between the concrete face and the rockfill body from 0.5 to 0.7 has no significant effect on the displacement of the dam crown under earthquake load. Moreover, by using tie interaction between the concrete layer and the rockfill body, there is a substantial difference in the history of the relative displacement of the dam, and the displacement of the dam due to its weight has been increased. Furthermore, the results of this study exhibit that, with increasing the water level in dam reservoir, the deformation of the crown of the dam along the earthquake application direction has had a relatively significant increase, such that in the full state, the maximum displacement is increased by about 50% compared to that of the empty case. This is while the most damage of concrete is observed in the case when half height of dam in filled by water. Due to the more destructive power of near-field earthquakes and their impact nature, only near-fault earthquakes have been used in this research. Therefore, the results of this study are valid only for the behavior of dam under near-field earthquakes.
./files/site1/files/134/3.pdf
Mahnaz Firuzi, Mohammad Hossein Ghobadi, Ali Noorzad, Ehsan Dadashi3,
Volume 13, Issue 5 (12-2019)
Abstract

Slope stability could be a major concern during the construction of infrastructures. This study is focused to analyze the slope stability of Manjil landslide that was located 41+400 to 42+200 km along Qazvin-Rasht freeway, Iran. The Manjil landslide, which had 168 m long and approximately 214 m wide, was occurred due to inappropriate cutting in June 2013 and led to destructive and closure of freeway. Slope stability analysis was carried out using a finite element shear strength reduction method (FE-SRM). The PHASE2D program was utilized in order to model the slope cutting and stability of landslide. Slope angle was flatted with 3H:2V geometry and stabilized with piling. The results indicated safety factors of 1.95 and 1.17 in the static and pseudo-static states, respectively, while the maximum bending moment with single pile (SP) in the pseudo-static state was 5.69 MN. Maximum bending moment of the pile around the slip surface was significantly large and more than the bending moment capacity of the pile. Due to the large bending moment on the pile, pile-to-pile cap connections (two pile group: 2PG) should be designed at the toe of the slope. The obtained results showed reduction of this parameter to 2.48 MN. Thus, it can be concluded that 2PG is a suitable stabilization method for the Manjil landslide.
Maryam Mokhtari, Kazem Barkhordari, Saeid Abbasi Karafshani,
Volume 13, Issue 5 (12-2019)
Abstract

In recent years, with the growing use of the nailing method for stabilizing excavation walls, there has been a need for a comprehensive investigation of the behavior of this method. In the  previous studies, the behavior of nailed walls has been investigated in static and dynamic states and under different conditions. However, due to the different feature of near-field ground motions, it is  necessary to study the effect of these motions on the behavior of the nailed walls. Near-fault ground motion is significantly affected by the earthquake record direction and the rupture mechanism. So, in this study, to compare the effects of near-field and far-field ground motions, a two-dimensional (2D) soil- nailed wall was considered. PLAXIS 2D was used for the modeling of the soil-nailed wall system. An excavation with a dimension of 10 meters in height was taken into the account. In this study, 10 records (Five fault-normal near-field ground motion records and five far-field ground motion records), were recorded  on the rock and  applied to the model. These ground motion records were derived from the near-fault ground motion record set used by Baker. These records were scaled to the Peak Ground Acceleration (PGA) of 0.35g and then applied to the bottom of the finite element models. Mohr-Coulomb model was then used to describe the soil behavior, and Elasto-plastic model was employed for the nails. A damping ratio of 0.05 was considered at the fundamental periods of the soil layer. The results showed that the  generated values of bending moment, shear force and axial force in nails under the effect of the near-fault ground motions were  more than those in the far-ault ground motions. These values were  almost equal to 23% for the maximum bending moment, 30% for the  shear force,  and 22% for the axial force. The created displacement under the effect of near-fault ground motions was  more than that in the far-fault since a higher energy was  applied to the model in the near-field ground motions during a short time (pulse-like ground motions). In contrast, in the far-fault ground motions, due to the more uniform distribution of energy during the record, such pulse-like displacements were not observed in the system response. Increasing in nail length and soil densification, decreases the displacement of the soil-nailed wall but does not change the general behavior of the soil under the effect of near-field ground motions. Based on the obtained results, for a constant PGA, there were  positive correlations between the values of the  maximum displacement on the top of the wall and  the PGV values of near-fault ground motion records. However, the mentioned correlations were  not observed in the case of far-fault ground motions.


Mohammad Mahdi Aminpour1, Mohammad Maleki,
Volume 14, Issue 1 (5-2020)
Abstract

Introduction
Studying the effect of slope angle on bearing capacity of foundations on the slope in urban areas is a challenging problem that has been investigated by researchers for years. In general, the analytical approaches for solving this problem can be categorized into limit equilibrium, characteristics and limit analysis methods. In recent years, there have been studies for using the limit analysis within the framework of finite element method for geomaterials. In these studies, the soil mass is not considered as rigid and there is no need to predefine a failure surface for the slope. In the performed research, using the upper bound finite element limit analysis, bearing capacity of strip foundation on slope have been studied. This analytical method enables the use of the advantages of both methods of limit analysis and finite element analysis. In this method, the slip between the two elements is considered. In order to find the critical state of the failure, the rate of power internally dissipated is linearly optimized, by using the interior points method. The advantages of this method are the high convergence rate in comparison with other analytical optimization methods. The effect of different upstream and downstream slopes and foundation depths and also the influence of various mesh discretizations have been evaluated. Finally, the results are compared with those obtained from previous methods available in the literature.
Methods
The finite element limit analysis method is based on nodal velocities. Considering the principals of the finite element method and having the nodal velocities, the velocity at each node of the element can be obtained from corresponding shape functions. The rate of power internally dissipated in each element is defined by multiplying the strain rate on stress in each element. In this method, the slip between the two elements and the rate of internal power dissipated at each discontinuity of two adjacent elements is considered. For this purpose, in each node, four new unknowns’ velocities are defined. To remove the stress from the equations, and provide a linear relationship for linear optimization, a linear approximation to the yield function has been used. For this purpose, the Mohr-Coulomb yield criterion is estimated with a polygon in the stress space. Also, using the reduced strength parameter, the effect of the dilation angle is considered. According to the principles of upper bound limit analysis, the value of plastic strain rate is calculated from the flow rule. The velocity field in elements and discontinuities must satisfy the set of constraints imposed by an associated flow rule. In order to have an acceptable kinematics field, the velocity vectors have to satisfy the boundary conditions. These conditions include zero kinematics velocities along the vertical and horizontal boundaries of the geometry as well as negative vertical unit velocities and zero horizontal velocities at points underneath the rigid foundation.
Results and discussion
In order to calculate the bearing capacity of foundation, a set of different uniform and non-uniform mesh has been examined. The results obtained from different uniform mesh sizes indicate a certain divergence in the course of analysis. However, the results between the fine and very fine non-uniform mesh are closely related to each other and are converged. The obtained results show that, by increasing the internal friction angle, the bearing capacity has been increased. At high angles of modified friction, the effect of increasing the internal friction angle on the increase in bearing capacity is more in slopes with lower angles. By increasing the downstream foundation depth, the bearing capacity has been increased. This increase is more important in the case of slopes with lower angles. However, the upstream depth variations didn't present a significant effete on bearing capacity. In order to investigate the effect of upstream angle on the bearing capacity, the upstream mesh is also refined similar to the downstream. The obtained results indicate that variations of the upstream angle have a minor effect on the bearing capacity. This is of course true if the upstream slope is fully stable. The results of the proposed method in this study are an upper bound for the results reported by the limit equilibrium and displacement finite element methods. As seen in Figure 1, the suggested method predicts lower bearing capacities compared to rigid block limit analysis method and is indeed a lower bound for the classical limit analysis method. The finite element limit analysis with linear optimization has resulted in more bearing capacity than cone optimization. The bearing capacities, obtained from characteristic lines method depending to the slope angles, in some cases is more and in some cases less than those explored by the proposed method.
In this paper, the bearing capacity of foundation located on slope was evaluated by finite element limit analysis method. In this regard, the effects of different downstream and upstream angles of slope and foundation depths and also, the effect of various mesh discretizations on the bearing capacity were studied. It is shown that an increase in the downstream angle causes a decrease in the bearing capacity and an increase in the downstream foundation depth leads to an increase in the bearing capacity.  However, the upstream angle and upstream foundation depth were not much effective on the bearing capacity.
 

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb