Search published articles


Showing 2 results for Topsis

A Soltanalizadeh, A Ramezanzadeh, Me Jalali,
Volume 8, Issue 3 (12-2014)
Abstract

The world financial crisis has drastically raised the costs of hydrocarbon materials. This simply manifests the strategic significance of crude oil storage. Regarding the special rank of the oil in Iran’s economy, storage industry development can be one of the solutions to control such a crisis. Underground storage of crude oil in synthetic structures (rock caverns, salt caverns, and obsolete mines) and natural structures (depleted fields of oil and gas, underground water resources, and natural caves) is possible. Among these possibilities more adaptable to the environment is the most appropriate. Due to the existence of many caves in Iran, crude oils storage in natural caves is a proper option. It is clear that if natural caves are used instead of caverns, much can be saved. The present article intends to choose a proper cave for crude oil storage through studying the natural caves based on a combination of fuzzy analytical hierarchy process (FAHP) and technique for order performance by similarity to idea solution (TOPSIS). The likely option is chosen. Roudafshan Cave is considered appropriate for crude oil underground storage based on several qualitative and quantitative criteria including tourism and environment protection regulations, capacity, distance from both main pipes of crude oil transfer and country's major petroleum factories. It should be noted that these criteria are ranked by an experienced team. This cave is located in the north east of Tehran in Firoozkooh and has three passageways which are among the largest ones in the country. Generally, its capacity is estimated to be about 250,000 square meters
Sahar Rezaian, Seyed Ali Jozi, Sadaf Ataee,
Volume 10, Issue 2 (11-2016)
Abstract

Objective of the present research is to identify, analyze, and assess risk of Paveroud Dam during construction phase. Following collection and analysis of the information related to environmental conditions of the area of study and technical specifications of dam construction, a list of probable risk factors was prepared in the form of a questionnaire, and for verification, the questionnaires were provided to a group of specialists consisting of elites and professors specialized at the disciplines relevant to environment and civil engineering. Number of questionnaires was determined based on Cochran’s formula. In the first step, the expert group in the research was asked to score in Likert scale format so as to analyze the acquired responses and the risks present in the region. Having analyzed the scores using the findings of PHA method, TOPSIS technique was applied to prioritize the identified risks of Paveroud Dam. The results indicated that erosion had the highest priority among 36 risk factors. After prioritization among the risk factors, risk was also assessed using RAM-D technique in which “impact on Sorkhabad Protected Zone with 9 scores, “erosion” with 6 scores, and “work at high elevation” with 3 scores were recognized as three major risks of Paveroud Dam. In order to mitigate the effects of dam risks during construction phase, environmental management planning is crucial, and for this purpose, risk mitigation choices were recommended at the end aimed at coping with the identified risks.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Engineering Geology

Designed & Developed by : Yektaweb