Samaneh Khani, P Homami,
Volume 8, Issue 1 (7-2014)
Abstract
In the recent years there was a great improvement in the development of underground structures. Due to the increase in the costs of constructions and the importance of the safety in transportation, attention has been focused on the hazards of earthquakes. In this paper, the effect of earthquakes and the importance of seismic analysis are described. The analysis method is presented briefly, and then the simplified analysis of Hashash et al. (2001) is used. Two metro station structures under two different seismic hazardlevels were analyzed. Pushover analysis method is also used which is a simple and static non-linear method in seismic analysis and design of structures. In this non-linear analysis, the target displacement is computed by the simplified frame analysis model. The finding of this study showed that the structure behavior was remained elastically to a large extent of displacement using this method. Hence, the design of the structures based on the performance level or reduction of the moment extracted from the Hashash et al. (2001) method is recommended.
, ,
Volume 10, Issue 4 (5-2017)
Abstract
There are various methods for the analysis of the interactional behavior of the surrounding land, using the lining structure which is the most common method of deigning lining structure tools for the static loads by using the hyper static methods. In recent years, there has been a question that depicts whether this method provides the best results in designing the tunnel structure or not.Due to the nonlinear behavior of the earth surrounding the lining structure, utilizing the lining method could lead to conservative results in the design. If it is possible to somehow find the forces caused by the real behavior of the land surrounding the lining structure influencing the structure and conduct the design based on them, more optimal results would be obtained. This study is based on the actual behavior of the land surrounding the lining structure and the displacement of the structure caused by forces with linear behavior in the static design according to the non-linear behavior of the land around the tunnel structure. The behavior is modeled using the non-linear programs and the forces affecting the lining of the structure will be inference. Also there is a case study based on this method in which the soil interaction with the tunnel analysis and designing the lining structure was first performed and eventually the obtained results were compared with the hyper static method. In this paper, analysis of maintenance system with lower thicknesses considering land-shield, indicated that applying the reinforced concrete with 40cm thickness has the potential to tolerate the applied load but lining with 45cm thickness is capable of tolerating the loads of design and it can be concluded that applying the simulation method combined with the soil and structure besides considering the nonlinear behavior of the soil leads to more economical results in a project.