[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
برای نویسندگان::
برای داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات پایگاه::
معرفی کتاب::
همکاری با فصلنامه::
::
APA Style

AWT IMAGE

..
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
نظرسنجی
وب سایت فصلنامه تحقیقات مدلسازی اقتصادی را چگونه ارزیابی می نمائید؟
خیلی خوب
خوب
متوسط
ضعیف
   
..
:: جستجو در مقالات منتشر شده ::
1 نتیجه برای الگوریتم Pso

سید کمال صادقی، سید مهدی موسویان،
دوره 5، شماره 20 - ( 6-1394 )
چکیده

مصرف گاز طبیعی به عنوان یکی از مهم‌ترین حامل‌های انرژی، طی سالیان اخیر روند صعودی را داشته و مدیریت مصرف و برنامه‌ریزی جهت تأمین نیازهای آن، نیازمند شناخت وضعیت مصرف کنونی و پیش‌بینی روند آتی آن می‌باشد. با معرفی و کاربرد گسترده مدل‌های مختلف همچون شبکه‌های عصبی مصنوعی جهت برآورد روند آتی مصرف و از طرفی تصادفی بودن آن‌ها، آگاهی از دقت این مدل‌ها جهت نیل به هدف پیش‌بینی دقیق‌تر، اهمیت بیشتری یافته است. پژوهش حاضر سعی دارد با به‌کارگیری شبکه‌های عصبی مصنوعی به عنوان مدلی غیرخطی و مدل خطی ARIMA در پیش‌بینی مصرف ماهانه گاز طبیعی در بخش خانگی ایران به عنوان عمده‌ترین بخش مصرف‌کننده، به مقایسۀ دقیق‌تر این پیش‌بینی‌ها با استفاده از باز نمونه‌گیری از نمونه‌ها بپردازد. بدین منظور ابتدا آموزش شبکه با استفاده از الگوریتم‌های ژنتیک و ازدحام ذرات صورت گرفته و مقایسه آن‌ها با استفاده از روش «10-fold» حاکی از عملکرد بهتر الگوریتم ازدحام ذرات جهت آموزش شبکه بود. در ادامه شبکه عصبی با  استفاده از باز نمونه‌گیری با جایگذاری از ‌داده‌های اردیبهشت‌ماه 1381 تا اسفندماه 1388 به تعداد 2000 بار توسط الگوریتم ازدحام ذرات آموزش داده شد و مصرف ماهانه گاز طبیعی در بخش خانگی طی سال‌های‌ 1389 و 1390 توسط آن‌ها پیش‌بینی و فاصله اطمینان 95 درصدی برای پیش‌بینی‌ها محاسبه شد. نتایج بررسی معنی‌داری اختلاف پیش‌بینی مدل ترکیبی شبکه عصبی با مدل ARIMA  و همچنین مقادیر واقعی، بر اساس فاصله اطمینان به دست آمده حاکی از  عملکرد بهتر شبکه عصبی ترکیبی نسبت به مدل ARIMA در اغلب ماه‌ها بود.



صفحه 1 از 1     

فصلنامه تحقیقات مدلسازی اقتصادی Journal of Economic Modeling Research
Persian site map - English site map - Created in 0.07 seconds with 28 queries by YEKTAWEB 4666