|
|
|
|
جستجو در مقالات منتشر شده |
|
|
4 نتیجه برای پیشبینی
اسماعیل نادری، دکتر حسین عباسی نژاد، دوره 2، شماره 8 - ( 6-1391 )
چکیده
این مطالعه برای پیشبینی بازدهی شاخص قیمت و بازده نقدی بورس اوراق بهادار تهران، آشوب را تحلیل و پیشبینیپذیری را بررسی کرده و نیز عملکرد انواع مدل های شبکۀ عصبی را با کمک دادههای تجزیهشده با روش موجک ارزیابی کرده است. بههمین منظور، از داده های سریزمانی روزانه و سری بازدهی شاخص قیمت و بازده نقدی بورس طی دورۀ زمانی ۵ فروردین ۱۳۸۸ تا ۱۸ اردیبهشت ۱۳۹۱ استفاده شده است. براساس نتایج این مطالعه، سری بازدهی بورس در دورۀ بررسیشده، پیشبینیپذیر بوده و آثار غیرخطی معیّن و آشوبی داشته است. همچنین برطبق معکوس آمارۀ حداکثر نمای لیاپانوف، تعداد روزهای پیشبینیپذیر در این مطالعه، ۳۱ روز بهدست آمد. یافتۀ دیگر این پژوهش نیز به برتری عملکرد مدل های شبکۀ عصبی چندلایۀ پیشخور ( MFNN ) و شبکۀ عصبی فازی ( ANFIS ) مبتنیبر داده های تجزیهشده به کمک تجزیۀ موجک در مقابل بهکارگیری سطح دادهها دلالت دارد. دراینبین نیز برتری با مدل شبکۀ عصبی چندلایۀ پیشخور بوده است.
مینو نظیفی نائینی، دکتر شهرام فتاحی، دکتر سعید صمدی، دوره 3، شماره 9 - ( 9-1391 )
چکیده
در این مطالعه، قدرت برازش و قدرت پیشبینی مجموعهای از مدلهای انتقالی گارچ مارکف SW-GARCH ، با استفاده از داده های بازار بورس اوراق بهادار تهران، طی سالهای 90-1376 مقایسه میشود. در این مقاله، از مدل انتقالی گارچ مارکف برای پیشبینی نوسانات در بازار بورس اوراق بهادار تهران در افقهای پیشبینی کوتاه مدت شامل یکروزه و پنجروزه (هفتهای) و دوره بلندمدت شامل دهروزه و 22روزه استفاده شده است. علت استفاده از این مدلها آن است که برای همۀ شاخصهای مدل، امکان چرخش یا انتقال بین دو رژیم پرنوسان و کمنوسان وجود دارد. به همین دلیل، هم توزیع گوسی (نرمال) و هم دو توزیع دنبالۀ پهن ( t -استیودنت و GED ) برای خطاها در نظر گرفته شده است. درجۀ آزادی نیز بین دو رژیم نوسان تغییرپذیر تعبیه شد تا چولگی احتمالی وابسته به زمان نیز در نظر گرفته شود. نتایج تجربی نشان میدهد برای پیشبینی نوسانات بازار سهام ایران، عملکرد مدلهای SW - GARCH با توزیع خطای t و با درجۀ آزادی متغیر بین دو رژیم، بسیار بهتر از مدلهای گارچ معمولی است. حتی در برازش و بررسیهای داخل نمونهای نیز این نوع از مدلهای انتقالی مارکف، رتبۀ اول را در زمینه قدرت برازش به خود اختصاص دادند.
حسین شریفی رنانی، نغمه هنرور، محمدرضا توکل نیا، دوره 4، شماره 16 - ( 6-1393 )
چکیده
هدف اصلی این تحقیق بررسی تأثیر شوکهای نفتی بر سطح تولیدات داخلی، سطح عمومی قیمتها، حجم پول و نرخ ارز با استفاده از رویکرد نوین تصحیح خطای برداری ساختاری (SVEC) مبتنی بر دادههای آماری فصلی 4Q1389- 1Q1359 ایران است. نتایج نشان میدهد که شوک مثبت قیمت واقعی نفت خام تأثیر مثبت و معنادار در کوتاه مدت، میان مدت و بلند مدت بر رویGDP واقعی دارد. همچنین تأثیر شوک قیمت واقعی نفت خام روی قیمت های داخلی در کوتاهمدت، میانمدت و بلندمدت منفی و معنادار است، به گونهای که ایجاد یک شوک مثبت قیمت واقعی نفت خام، قیمتهای داخلی را کاهش میدهد. به علاوه، شوک مثبت قیمت واقعی نفت خام، تأثیر منفی و معنادار روی نرخ ارز در کوتاهمدت، میانمدت و بلندمدت دارد. با این حال، شوک قیمت نفت تأثیر دائمی بر نرخ ارز واقعی دارد. واردات کشور نیز به سبب افزایش ثروت و افزایش تقاضا برای تولیدات واسطهای، افزایش خواهد یافت. از طرفی، یک شوک مثبت ماندۀ حقیقی پول، در کوتاهمدت، سبب افزایش آنی در تولیدات واقعی میشود.
سید کمال صادقی، سید مهدی موسویان، دوره 5، شماره 20 - ( 6-1394 )
چکیده
مصرف گاز طبیعی به عنوان یکی از مهمترین حاملهای انرژی، طی سالیان اخیر روند صعودی را داشته و مدیریت مصرف و برنامهریزی جهت تأمین نیازهای آن، نیازمند شناخت وضعیت مصرف کنونی و پیشبینی روند آتی آن میباشد. با معرفی و کاربرد گسترده مدلهای مختلف همچون شبکههای عصبی مصنوعی جهت برآورد روند آتی مصرف و از طرفی تصادفی بودن آنها، آگاهی از دقت این مدلها جهت نیل به هدف پیشبینی دقیقتر، اهمیت بیشتری یافته است. پژوهش حاضر سعی دارد با بهکارگیری شبکههای عصبی مصنوعی به عنوان مدلی غیرخطی و مدل خطی ARIMA در پیشبینی مصرف ماهانه گاز طبیعی در بخش خانگی ایران به عنوان عمدهترین بخش مصرفکننده، به مقایسۀ دقیقتر این پیشبینیها با استفاده از باز نمونهگیری از نمونهها بپردازد. بدین منظور ابتدا آموزش شبکه با استفاده از الگوریتمهای ژنتیک و ازدحام ذرات صورت گرفته و مقایسه آنها با استفاده از روش «10-fold» حاکی از عملکرد بهتر الگوریتم ازدحام ذرات جهت آموزش شبکه بود. در ادامه شبکه عصبی با استفاده از باز نمونهگیری با جایگذاری از دادههای اردیبهشتماه 1381 تا اسفندماه 1388 به تعداد 2000 بار توسط الگوریتم ازدحام ذرات آموزش داده شد و مصرف ماهانه گاز طبیعی در بخش خانگی طی سالهای 1389 و 1390 توسط آنها پیشبینی و فاصله اطمینان 95 درصدی برای پیشبینیها محاسبه شد. نتایج بررسی معنیداری اختلاف پیشبینی مدل ترکیبی شبکه عصبی با مدل ARIMA و همچنین مقادیر واقعی، بر اساس فاصله اطمینان به دست آمده حاکی از عملکرد بهتر شبکه عصبی ترکیبی نسبت به مدل ARIMA در اغلب ماهها بود.
|
|
|
|
|
|