Volume 25, Issue 76 (3-2025)                   jgs 2025, 25(76): 210-227 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ekhlasi M, Soltani-Gerdefaramarzi S, Azizian A, Gheysouri M. The effects of climate change on the virtual water of some crops in Kerman province. jgs 2025; 25 (76) :210-227
URL: http://jgs.khu.ac.ir/article-1-4174-en.html
1- , ssoltani@ardakan.ac.ir
2- Ardakan University
3- University of Tehran
Abstract:   (3706 Views)
In this study, we examined the impact of climate change on the virtual water content of key crops in Kerman province for future periods. Specifically, we utilized the climatic data from the HadCM3 model under the RCP4.5 radiative forcing scenario. The model was calibrated and validated for the base period of 1991-2011. We predicted the precipitation levels, as well as the maximum and minimum temperatures, for selected stations from 2011 to 2070 using data from LARS-WG. These predictions were then compared to the base period. The virtual water content was calculated for three selected crops: alfalfa, barley, and wheat. Our findings indicate that climate change has a significant impact on evapotranspiration and the performance of these crops, consequently affecting future agricultural water productivity. As we project an increase in average temperature during the growing season due to climate change, it is worth noting that the maximum temperature parameter will be more affected by this phenomenon than the minimum temperature. This, in turn, will lead to increased water requirements and plant evaporation-transpiration during this period. Our research also reveals a decrease in precipitation during hot seasons and an increase during cold seasons across all study stations. Notably, the virtual water content for all crops studied demonstrates an upward trend, with barley and wheat showing the greatest average increase in the future period. Specifically, the Kerman station exhibits a substantial increase in virtual water content for barley and alfalfa products, at a minimum of 30% higher than the base period.
Full-Text [PDF 1180 kb]   (221 Downloads)    
Type of Study: Research | Subject: climatology

References
1. حجازی زاده، زهرا؛ زارعی، شریفه؛ صیاد، وحیده؛ (1402). بررسی چشم انداز تغییرات شاخص های حدی دما و بارش در استان کردستان بر اساس سناریوهای واداشت تابشی (RCP). مجله تحقیقات کاربردی علوم جغرافیایی. ۲۳ (۶۹) :۱۴-1.
2. حیدری ناشه کبود، شادیه؛ خوشخو، یونس؛ (1398). تصویرسازی و پیش‌بینی تغییرات آتی تبخیر و تعرق مرجع در مقیاس‌های فصلی و سالانه در غرب ایران بر اساس سناریوهای انتشار RCP. مجله تحقیقات کاربردی علوم جغرافیایی. 19(53): 157-176.
3. جعفری گدنه، میثم؛ سلاحقه، علی؛ ملکیان، آرش؛ (1400). بررسی تاثیر سناریوهای مختلف تغییر اقلیم بر نوسانات آب زیرزمینی در مناطق خشک و نیمه خشک (مطالعه موردی: دشت کرمان). مجله مهندسی آبیاری و آب ایران. 44(2): 252-275.
4. دهقانی، طیبه؛ سلیقه، محمد؛ علیجانی، بهلول؛ (1397). اثر تغییر اقلیم بر میزان آب قابل بارش در سواحل شمالی خلیج فارس. نشریه تحقیقات کاربردی علوم جغرافیایی، 18(49): 75-91.
5. علیقلی نیا، توحید؛ قربانی، خلیل؛ رضایی، حسین؛ قربانی نصر آباد، قربان؛ (1399). ارزیابی و شبیه سازی ردپای آب محصولات کشاورزی در اقلیم های مختلف ایران با لحاظ سناریوهای تغییر اقلیم. مجله تحقیقات منابع آب ایران. 54(3): 80-97.
6. غلامحسین پورجعفری نژاد، ابوالفضل؛ علیزاده، امین؛ نشاط، علی؛ (1392). بررسی ردپای اکولوژیک آب و شاخص های آب مجازی در محصولات پسته و خرما در استان کرمان. فصلنامه علمی پژوهشی مهندسی آبیاری و آب، شماره 13: 80-89.
7. رحیمی پور انارکی، محمدرضا؛ محمدی، علی؛ رفیعیان، مجتبی؛ ارجمندی، رضا؛ کریمی، سعید؛ (1399). ارزیابی آب مجازی و ردپای آب محصولات کشاورزی (شهرستان، قلعه گنج). فصلنامه مطالعات جغرافیایی مناطق خشک. 11(41): 52-68.
8. روستایی، مریم؛ اسدی، علی؛ کلانتری، خلیل؛ (1400). بررسی روابط متقابل مولفه های کشاورزی اقلیم هوشمند با استفاده از تکنیک DEMATEL. فصلنامه تحقیقات اقتصاد و توسعه کشاورزی ایران. 52(3): 569-589.
9. زارعیان، محمدجواد؛ (1400). شناسایی اولویت های بخش آب جهت سازگاری با تغییر اقلیم در حوضه زاینده رود با رویکرد پدافند غیرعامل. مجله مدیریت آب و آبیاری، 11(2): 291-300.
10. صلاحی، برومند؛ صفریان زنگیر، وحید؛ (1402). پایش تأثیر گرمایش جهانی برکشت گندم در دشت مغان (گرمی) با کاربرد مدل گردش عمومی جوی. تحقیقات کاربردی علوم جغرافیایی. 23(68): 99-113.
11. محمدرضایی، مژده؛ قهرمان، نوذر؛ (1400). چشم انداز آب مجازی گیاهان عمده زراعی تحت سناریوهای واداشت تابشی تغییر اقلیم (مطالعه موردی استان کرمان). نشریه پژوهشهای اقلیم شناسی،45: 80-67
12. نیکبخت شهبازی، علیرضا؛ (1397). ارزیابی اثرات نوسانات اقلیم بر میزان آب مجازی محصولات کشاورزی استان خوزستان تحت سناریوهای واداشت تابشی، نشریه فیزیک زمین و فضا، 44(2): 363-378.
13. Aligholi Nia T. Ghorbani Kh. Rezai H. Ghorbani Nasr Abad Gh. 2020. Evaluation and simulation of water footprints of agricultural products in different climates of Iran in terms of climate change scenarios. Journal of Iranian Water Resources Research. 54(3): 80-97. [In Persian]
14. Allan JA. 1993. Fortunately there are substitutes for water otherwise, our hydropolitical futures would be impossible' In: Proceedings of Priorities for water resources allocation and management, ODA, London, 13-26.
15. Allan JA. 2003. Virtual water-the water, food, and trade nexus. Useful concept or misleading metaphor? Water international. 28(1):106-13. [DOI:10.1080/02508060.2003.9724812]
16. Baki S. Rozos E. and Makropoulos C. 2018. Designing water demand management schemes using a socio-technical modelling approach. Sci. Total Environ. 622,1590e1602. [DOI:10.1016/j.scitotenv.2017.10.041] [PMID]
17. Dehghani T. Saligheh M. Alijani B. 2017. The effect of climate change on the amount of precipitable water in the northern coasts of the Persian Gulf. Journal of Applied Research in Geographical Sciences, 18(49): 75-91. [In Persian] [DOI:10.29252/jgs.18.49.75]
18. Duan P. Qin L. Wang Y. and He H. 2015. Spatial pattern characteristics of water footprint for maize production in Northeast China. Journal of the Science of Food Agriculture 96(2): 561- 568. DOI: 10.1002/jsfa.7124. [DOI:10.1002/jsfa.7124] [PMID]
19. Foley D. Thenkabail P. S. Aneece I. P. Teluguntla P. G. and Oliphant A. J. 2019. A meta-analysis of global crop water productivity of three leading world crops (wheat, corn, and rice) in the irrigated areas over three decades. International Journal of Digital Earth, 13(8): 939-975. [DOI:10.1080/17538947.2019.1651912]
20. Gholamhossein Pourjafarinejad A. Alizadeh A. and Neshat A. 2013. Investigation of water ecological footprint and virtual water indicators in pistachio and date crops in Kerman province, Irrigation and Water Engineering Research Quarterly, No. 13, 80-89. [In Persian]
21. Gordon C. Cooper C. Senior C.A. Banks H. Gregory J.M. Johns T.C. Mitchell J.F.B. and Wood R.A. 2000. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim. Dynam. 16: 147-168. [DOI:10.1007/s003820050010]
22. Hejazizadeh Z. Zarei S. Sayad V. 2023. Investigation of Changes of Temperature and Rainfall Indicators in Kurdistan Province Based on Radiation Injection Scenarios (RCP). Journal of Applied researches in Geographical Sciences. 23 (69):1-14. [In Persian]
23. Heydari-Tasheh-Kaboud S. Khoshkhue Y. 2019. Projection and prediction of the annual and seasonal future reference evapotranspiration time scales in the West of Iran under RCP emission scenarios. Journal of Applied researches in Geographical Sciences.19 (53):157-176. [In Persian] [DOI:10.29252/jgs.19.53.157]
24. Hirwa H. Zhang Q. Qiao Y. Peng Y. Leng P. Tian C. Khasanov S. Li F. Kayiranga A. Muhirwa F. and Itangishaka A.C. 2021. Insights on water and climate change in the greater horn of Africa: Connecting virtual water and water-energy-food-biodiversity-health nexus. Sustainability, 13(11), p.6483. [DOI:10.3390/su13116483]
25. Kiani qale sard S. Shahraki J. Akbari A. Sardar Shahraki A. 2019. Investigating the effect of climate change on agricultural water consumption and Iranian water resources reserves. Journal of Iranian Irrigation and Water Engineering. 37(3): 109-120. [In Persian]
26. Konar M. Hussein Z. Hanasaki N. Mauzerall D.L. and Rodriguez-Iturbe I. 2013. Virtual water trade flows and savings under climate change. Hydrology and Earth System Sciences, 17(8): 3219-3234. [DOI:10.5194/hess-17-3219-2013]
27. Jafari Gadneh M. Salajegheh A. Malekian A. 2021. The effect of different climate change scenarios on groundwater fluctuations in arid and semi -arid regions (Case Study: Kerman Plain). Journal of Iranian Irrigation and Water Engineering. 44(2): 252-275. [In Persian]
28. Mohammad Rezaei M. Khaherman N. 2021. The virtual water landscape of major crops under radiative forcing scenarios of climate change (case study of Kerman province). Climatology Research Journal, 45: 67-80. [In Persian]
29. Nikbakht Shahbazi A.R. 2017. Evaluating the effects of climate fluctuations on the virtual water content of agricultural products in Khuzestan province under radiative forcing scenarios, Journal of Earth and Space Physics, 44(2): 363-378. [In Persian]
30. Nikolaou G. Neocleous D. Christou A. Polycarpou P. Kitta E. and Katsoulas N. 2021. Energy and Water Related Parameters in Tomato and Cucumber Greenhouse Crops in Semiarid Mediterranean Regions. A Review, Part I: Increasing Energy Efficiency. Horticulturae, 7(12): 521. [DOI:10.3390/horticulturae7120521]
31. Pope V.D. Gallani M.L. Rowntree P.R. and Stratton R.A. 2000. The impact of new physical parametrizations in the Hadley Centre climate model HadAM3. Climate Dynamics, 16: 123-146. [DOI:10.1007/s003820050009]
32. Rahimipour Anarki M. R. Mohammadi A. Rafiyan M. Arjamandi R. and Karimi S. 2019. Evaluation of virtual water and water footprint of agricultural products (Shaherstan, Qalaganj). Quarterly Journal of Geographical Studies of Arid Regions, 11(41): 52-68. [In Persian]
33. Roustaie M. Asadi A. Kalantari Kh. 2021. Investigating the interactions of intelligent agricultural components using Dematel technique. Journal of Iranian Agricultural Economics and Development Research. 52(3): 569-589. [In Persian]
34. Salahi B, safarian zangir V. 2023. Monitoring the impact of global warming on wheat cultivation in the Mughan Plain (Germi) Using the atmospheric circulation model. Journal of Applied researches in Geographical Sciences. 23(68): 99-113. [In Persian]
35. Yang C. Fraga H. Van Ieperen W. and Santos J.A. 2017. Assessment of irrigated maize yield response to climate change scenarios in Potugal. Agricultural Water Management. 184: 178-190. [DOI:10.1016/j.agwat.2017.02.004]
36. Zareian J. 2021. Identify the priorities of the water sector to adapt to climate change in the Zayandehrood Basin with passive defense approach. Journal of Water and Irrigation Management, 11 (2): 291-300. [In Persian]
37. Zhao Q. Junguo L. Nikolay Kh. Obersteiner M. and Westphal M. 2014. Impacts of climate change on virtual water content of crops in China. Ecological Informatics, 19, 26-34. [DOI:10.1016/j.ecoinf.2013.12.005]
38. Zhao H. Qu S. Guo S. Zhao H. Liang S. and Xu, M. 2019. Virtual water scarcity risk to global trade under climate change. Journal of cleaner production, 230: 1013-1026. [DOI:10.1016/j.jclepro.2019.05.114]
39. Zhi Y. Hamilton P.B. Wu G. Hong N. Liang L. Xiong D. and Sun Y. 2022. Virtual water indicator for comprehensive water pressures: Model and case studies. Journal of Hydrology, 608: 127664. [DOI:10.1016/j.jhydrol.2022.127664]
40. Aligholi Nia T. Ghorbani Kh. Rezai H. Ghorbani Nasr Abad Gh. 2020. Evaluation and simulation of water footprints of agricultural products in different climates of Iran in terms of climate change scenarios. Journal of Iranian Water Resources Research. 54(3): 80-97. [In Persian]
41. Allan JA. 1993. Fortunately there are substitutes for water otherwise, our hydropolitical futures would be impossible' In: Proceedings of Priorities for water resources allocation and management, ODA, London, 13-26.
42. Allan JA. 2003. Virtual water-the water, food, and trade nexus. Useful concept or misleading metaphor? Water international. 28(1):106-13. [DOI:10.1080/02508060.2003.9724812]
43. Baki S. Rozos E. and Makropoulos C. 2018. Designing water demand management schemes using a socio-technical modelling approach. Sci. Total Environ. 622,1590e1602. [DOI:10.1016/j.scitotenv.2017.10.041] [PMID]
44. Dehghani T. Saligheh M. Alijani B. 2017. The effect of climate change on the amount of precipitable water in the northern coasts of the Persian Gulf. Journal of Applied Research in Geographical Sciences, 18(49): 75-91. [In Persian] [DOI:10.29252/jgs.18.49.75]
45. Duan P. Qin L. Wang Y. and He H. 2015. Spatial pattern characteristics of water footprint for maize production in Northeast China. Journal of the Science of Food Agriculture 96(2): 561- 568. DOI: 10.1002/jsfa.7124. [DOI:10.1002/jsfa.7124] [PMID]
46. Foley D. Thenkabail P. S. Aneece I. P. Teluguntla P. G. and Oliphant A. J. 2019. A meta-analysis of global crop water productivity of three leading world crops (wheat, corn, and rice) in the irrigated areas over three decades. International Journal of Digital Earth, 13(8): 939-975. [DOI:10.1080/17538947.2019.1651912]
47. Gholamhossein Pourjafarinejad A. Alizadeh A. and Neshat A. 2013. Investigation of water ecological footprint and virtual water indicators in pistachio and date crops in Kerman province, Irrigation and Water Engineering Research Quarterly, No. 13, 80-89. [In Persian]
48. Gordon C. Cooper C. Senior C.A. Banks H. Gregory J.M. Johns T.C. Mitchell J.F.B. and Wood R.A. 2000. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim. Dynam. 16: 147-168. [DOI:10.1007/s003820050010]
49. Hejazizadeh Z. Zarei S. Sayad V. 2023. Investigation of Changes of Temperature and Rainfall Indicators in Kurdistan Province Based on Radiation Injection Scenarios (RCP). Journal of Applied researches in Geographical Sciences. 23 (69):1-14. [In Persian]
50. Heydari-Tasheh-Kaboud S. Khoshkhue Y. 2019. Projection and prediction of the annual and seasonal future reference evapotranspiration time scales in the West of Iran under RCP emission scenarios. Journal of Applied researches in Geographical Sciences.19 (53):157-176. [In Persian] [DOI:10.29252/jgs.19.53.157]
51. Hirwa H. Zhang Q. Qiao Y. Peng Y. Leng P. Tian C. Khasanov S. Li F. Kayiranga A. Muhirwa F. and Itangishaka A.C. 2021. Insights on water and climate change in the greater horn of Africa: Connecting virtual water and water-energy-food-biodiversity-health nexus. Sustainability, 13(11), p.6483. [DOI:10.3390/su13116483]
52. Kiani qale sard S. Shahraki J. Akbari A. Sardar Shahraki A. 2019. Investigating the effect of climate change on agricultural water consumption and Iranian water resources reserves. Journal of Iranian Irrigation and Water Engineering. 37(3): 109-120. [In Persian]
53. Konar M. Hussein Z. Hanasaki N. Mauzerall D.L. and Rodriguez-Iturbe I. 2013. Virtual water trade flows and savings under climate change. Hydrology and Earth System Sciences, 17(8): 3219-3234. [DOI:10.5194/hess-17-3219-2013]
54. Li M. Cao X. Liu D. Fu Q. Li T. and Shang R. 2022. Sustainable management of agricultural water and land resources under changing climate and socio-economic conditions: A multi-dimensional optimization approach. Agricultural Water Management, 259:107235. [DOI:10.1016/j.agwat.2021.107235]
55. Jafari Gadneh M. Salajegheh A. Malekian A. 2021. The effect of different climate change scenarios on groundwater fluctuations in arid and semi -arid regions (Case Study: Kerman Plain). Journal of Iranian Irrigation and Water Engineering. 44(2): 252-275. [In Persian]
56. Mohammad Rezaei M. Khaherman N. 2021. The virtual water landscape of major crops under radiative forcing scenarios of climate change (case study of Kerman province). Climatology Research Journal, 45: 67-80. [In Persian]
57. Nikbakht Shahbazi A.R. 2017. Evaluating the effects of climate fluctuations on the virtual water content of agricultural products in Khuzestan province under radiative forcing scenarios, Journal of Earth and Space Physics, 44(2): 363-378. [In Persian]
58. Nikolaou G. Neocleous D. Christou A. Polycarpou P. Kitta E. and Katsoulas N. 2021. Energy and Water Related Parameters in Tomato and Cucumber Greenhouse Crops in Semiarid Mediterranean Regions. A Review, Part I: Increasing Energy Efficiency. Horticulturae, 7(12): 521. [DOI:10.3390/horticulturae7120521]
59. Pope V.D. Gallani M.L. Rowntree P.R. and Stratton R.A. 2000. The impact of new physical parametrizations in the Hadley Centre climate model HadAM3. Climate Dynamics, 16: 123-146. [DOI:10.1007/s003820050009]
60. Rahimipour Anarki M. R. Mohammadi A. Rafiyan M. Arjamandi R. and Karimi S. 2019. Evaluation of virtual water and water footprint of agricultural products (Shaherstan, Qalaganj). Quarterly Journal of Geographical Studies of Arid Regions, 11(41): 52-68. [In Persian]
61. Roustaie M. Asadi A. and Kalantari Kh. 2021. Investigating the interactions of intelligent agricultural components using Dematel technique. Journal of Iranian Agricultural Economics and Development Research. 52(3): 569-589. [In Persian]
62. Salahi B, safarian zangir V. 2023. Monitoring the impact of global warming on wheat cultivation in the Mughan Plain (Germi) Using the atmospheric circulation model. Journal of Applied researches in Geographical Sciences. 23(68): 99-113. [In Persian]
63. Semenov MA. Brooks RJ. Barrow EM. and Richardson CW. 1998. Comparison of the WGEN and LARS-WG stochastic weather generators for diverse climates. Clim Res. 10: 95-107. [DOI:10.3354/cr010095]
64. Yang C. Fraga H. Van Ieperen W. and Santos J.A. 2017. Assessment of irrigated maize yield response to climate change scenarios in Potugal. Agricultural Water Management. 184: 178-190. [DOI:10.1016/j.agwat.2017.02.004]
65. Yu D. and Ding T. 2021. Assessment on the flow and vulnerability of water footprint network of Beijing city, China. Journal of Cleaner Production, 293:126126. [DOI:10.1016/j.jclepro.2021.126126]
66. Zareian J. 2021. Identify the priorities of the water sector to adapt to climate change in the Zayandehrood Basin with passive defense approach. Journal of Water and Irrigation Management, 11 (2): 291-300. [In Persian]
67. Zhang F. Jin G. and Liu G. 2021. Evaluation of virtual water trade in the Yellow River Delta, China. Science of the Total Environment, 784:147285. [DOI:10.1016/j.scitotenv.2021.147285] [PMID]
68. Zhao Q. Junguo L. Nikolay Kh. Obersteiner M. and Westphal M. 2014. Impacts of climate change on virtual water content of crops in China. Ecological Informatics, 19, 26-34. [DOI:10.1016/j.ecoinf.2013.12.005]
69. Zhao H. Qu S. Guo S. Zhao H. Liang S. and Xu, M. 2019. Virtual water scarcity risk to global trade under climate change. Journal of cleaner production, 230: 1013-1026. [DOI:10.1016/j.jclepro.2019.05.114]
70. Zhi Y. Hamilton P.B. Wu G. Hong N. Liang L. Xiong D. and Sun Y. 2022. Virtual water indicator for comprehensive water pressures: Model and case studies. Journal of Hydrology, 608: 127664. [DOI:10.1016/j.jhydrol.2022.127664]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Applied researches in Geographical Sciences

Designed & Developed by : Yektaweb