Search published articles


Showing 4 results for Abbasi

Mr Ebrahim Bairanvand, Dr Amir Gandomkar, Dr Alireza Abbasi, Dr Morteza Khodaghoi,
Volume 0, Issue 0 (3-1921)
Abstract

The occurrence of torrential rains in April 2017 in Lorestan province was a clear example of heavy rains that left very heavy damage to agricultural, urban, transportation and communications infrastructure. The purpose of this study is to investigate and reveal the relationship between the physical structure of clouds producing two waves of heavy rainfall in April 2017 in the Doroud catchment area of ​​Boroujerd. In this regard, the statistical characteristics of two precipitation waves on March 25 and April 1, 2019 were analyzed. The supernatural properties of the clouds producing these two heavy rainfall waves were investigated using the Madis superconductor product, MOD06. 4 Microphysical factors of generating clouds These two waves of heavy rainfall in the Doroud-Borujerd basin, including cloud peak temperature (CTT), cloud peak pressure (CTO), optical cloud thickness (COT) and cloud cover ratio (CF) were analyzed. Statistics of these two waves of heavy rainfall showed that in the first wave of heavy rainfall, ie the wave of March 25, 2019, (5 April 1398) 15% of the total annual rainfall and in the second wave, the wave of April 1, 2019 (April 12, 1398) 20% of the total The total average annual rainfall of the region was recorded in these two days. The results of analyzing the microphysical structure of the generating clouds of these two precipitation waves using the MODSI cloud sensor product data showed that the four microphysical factors of the cloud showed a significant spatial correlation with the recorded precipitation values ​​of these two heavy precipitation waves. The two factors of temperature and pressure of cloud peak, which show a vertical expansion of clouds in the area, showed a significant inverse relationship with the amount of precipitation in the basin, while the two factors of cloud ratio and cloud optical thickness have a direct and significant spatial correlation with values. Recorded rainfall showed. The results of this study showed that in these two events of heavy rainfall, a significant and strong relationship was established between the microphysical structure of the cloud and the amount of rainfall recorded in the region.
 
Dr Seyed Hojjat Mousavi, Mis Asiyeh Abbasian, Mis Parinaz Zoormand,
Volume 17, Issue 46 (9-2017)
Abstract

Therefore, this study was to evaluate the ecological potential of Ecotourism development in order to study extensive and focused outing in Shahreza County. In this respect, the ecological model of tourism development assessment was fitted. At first, data of slope, aspect, soil order, bedrock, vegetation, temperature and sunshine hour parameters were obtained, and the appropriate areas maps, from the perspective of each parameter is drawn with due observance of the principles and conditions of the said model, and apply the its thresholds. Then, the final mapping of focused and extensive outing of tourism development was drawn by the integration of prone areas maps. Eventually, the final layer of outing was assessing accuracy through the encounter of the natural attractions and rural centers layers. The results showed that extent about 9.0198 and 3.9526 km2 (0.32% and 0.14%) of the Shahreza County are appropriate for the development of one and two levels of focused outing, respectively. Also, extent about 263.1973 and 298.1843 km2 (9.41% and 10.67%) are appropriate for the development of one and two levels of extensive outing, respectively. The high adaptation of the natural attractions and rural centers to the classes evaluated of ecotourism development maps has been showed the acceptable accuracy of the tourism development and the spatial and land use management maps is the Shahreza County.
 

Dr. Mohammad Javad Vahidi, Dr. Rasoul Mirabbasi,
Volume 19, Issue 53 (6-2019)
Abstract

In order to protect soil and water resources should be identified erodible areas of watersheds, to be able to prevent land degradation and to control erosion in the form of soil conservation planning or watershed management. Therefore, the present study aimed to classification and delineation of susceptible areas to water erosion in the Hervi watershed using Hjulstrom curve, has been conducted. Increasing of accuracy, speed and facility of spatial achievement, using GIS technology, are advantages of the present study. In this study, were separated 10 sub-watersheds based on the feeding levels of streams. Spatial variability of soil properties in sub-watersheds, such as texture and the mean diameter size of the particles using hydrometer method were measured; also the maximum potential velocity of outlet in sub-watersheds based on the characteristics of each sub-watershed were calculated. Then, status of erosion and sediment in watersheds and sub-watersheds was studied using Hjulstrom curve (based on the mean diameter size of sediment particles and the maximum potential velocity of outlet), and was comparatively classified in term of erodibility. Finally, delineation map of susceptible regions to water erosion in the study area were obtained. The results revealed that the upstream and side areas of the watershed including: Sub-watershed No.4 (8.94% of the land), has very high erodibility, and Sub-watersheds No.1 and No.9 (36.94% of the land) have high erodibility. These areas are steep and often devoid of vegetation or have poor vegetation (such as poor pastures and rain-fed farming); so, it is necessary a proper strategy to prevent further erosion.

Saeed Jahanbakhshasl, Ali Mohammadkhorshiddoust, Fatemeh Abbsighasrik, Zahra Abbasighasrik,
Volume 24, Issue 75 (12-2024)
Abstract

 Assessing and predicting future climate change is of particular importance due to its adverse effects on water resources and the natural environment, as well as its environmental, economic and social effects. Meanwhile, rainfall is also an important climatic element that causes a lot of damage in excess conditions. West Azerbaijan Province is no exception. The aim of this study is to model and predict 30 years of rainfall in West Azerbaijan province. The statistical period studied is 32 years (2019-1987). Selected stations in the province include Urmia, Piranshahr, Takab, Khoy, Sardasht, Mahabad and Mako stations. Average slider time series models, Sarima (seasonal Arima), Health Winters were used for analysis and prediction and also linear regression and Mann-Kendall test were used to determine the data trend. The results show an increasing trend of precipitation in Urmia, Piranshahr, Khoy, Sardasht and Mako stations and a decreasing trend in Takab and Mahabad stations. According to the results of comparing the models used, the Health Winters model with the least error in the absolute mean of deviations, mean squared deviations and the percentage of absolute mean errors was introduced as the best precipitation forecasting model for West Azerbaijan province. province.                                     [A1] 



Page 1 from 1     

© 2024 CC BY-NC 4.0 | Applied researches in Geographical Sciences

Designed & Developed by : Yektaweb