Showing 6 results for farajzadeh
Ms. Aida Faroghi, Professor Manuchehr Farajzadeh, ,
Volume 0, Issue 0 (3-1921)
Abstract
In this research, the frequency of merging of the polar-front and subtropical jet streams and its effect on the amount of precipitation received from the atmospheric pattern in western Iran during the 10-year statistical period of 2010-2019 was investigated. Then, by coding in Grads, the maps of jet stream level 300 hPa were drawn with a time interval of 6 hours. During the statistical period, these two jet streams merged along their axis. By examining the frequency of the merging of two jet streams, it was found that until 2015, the frequency of the merging of two jet streams in December was an increasing trend and in 2016 and 2017, there was a decreasing trend. It has increased again in 2018 and 2019. In all cases, the merging of two jet streams has not resulted in heavy precipitation events (December 2011, 2014 and 2017). So, considering the heavy rainfall of 110 mm from Dehloran station, the date of 12th to 15th of December was chosen to analyze and understand the system that led to the occurrence of rainfall. From December 12 to 15, 2010, the decrease in air temperature over Europe and Southwest Asia led to a large meridional movement of the polar-front jet stream, which resulted in merging with the subtropical monsoon. On the 12th of December 2010, along with the medicalization of the polar-front jet stream and its penetration into the tropical regions, its velocity core merged with the core of the subtropical jet stream over the northern Arabian Peninsula, the Red Sea and northeastern Africa. The merging of these two jet streams has led to the vertical expansion of the jet to lower levels, and in the middle level of the atmosphere, very low meridional movement is observed. As a result, the Sudan low moves to higher latitudes and merges with the Mediterranean low pressure.
Yosouf Ghavidel Rahimi, Manochehr Farajzadeh, Mehdi Alijahan,
Volume 15, Issue 36 (6-2015)
Abstract
Global warming and the meaningful relationship between temperature and precipitation changes over different areas of the earth with temperature increment of the earth, are considered as the most important patterns of this century’s climate changes. Today, there is debate over climate change and global temperatures increasing. Damaging effects of this phenomenon on the planet is one of the most challenging issues in global scale. Because of this, the research ahead is done for the detection of global warming on maximum temperatures, monthly and periodic (hot and cold) as well. For this study, two groups of data, temperature data of 17 synoptic stations and corresponding amounts of data in global temperature anomalies were figured out over 60 years period of time (1951 to 2010). Goals, the Pearson correlation method for detecting relationships between data's, linear and polynomial regression for trend analysis time series data , To illustrate the correlation between the spatial distribution of temperature data with global warming stations nationwide Geostatistical model Finally, non-parametric test for detecting significant temperature change Man - Kendall were used. According to the results impact of global warming on the maximum temperature in the cold months like January, December and November should be much lower, and the highest in spring and summer season in the southern stations such as Abadan, Ahwaz and Shiraz seen. The above process is also evident in periods of hot and cold temperatures and the influence of the stations temperature of the warm period of global warming were higher than cold period and represent an increase in the temperature of the warm period of years. In between, the number of stations as well as Anzali, Urmia and Khorramabad stations in some months had the opposite influence of global warming and seen drop in the maximum temperatures of them. It is also observed in the results obtained from the analysis period. Station's maximum temperature trend change is represents significant in the summer month. Changes trend in the months of July, August and September, is significant that the process is more pronounced in the southern stations. Significant analysis trend changes have been taken in periods (cold and hot) in studied stations indicative of its significance in warm period.
Yousouf Ghavidel Rahimi, Manochehr Farajzadeh Asl, Solmaz Motalebizad,
Volume 16, Issue 40 (3-2016)
Abstract
This study tries to identify, classify, and analyze synoptic cold wave in North West region of Iran. This study applies standardized (z scores) index of Minimum Temperature in the period of 1951-2010.as such cold waves were classified based on the intensity of occurance. Out of occured cold wave in North West of the coldest identified wave pertaingt each class for synoptic analyzes were selected. This study suggests that the prevailing pressure pattern during the relevant wave indicates high pressure over the earth surface as well as deep trough in upper layer. From the continuing cold standpoint, the role of changing position from pavallel wind in to meridional corresponel to blocking is very offective. Blocking in turn leads to reduction in speed of cold air masses which are originating from higher latitude. They were assouclated with cold waves. More precipitation as so ciated with higher latitude as well as low speed flows will lead to strong and continious waves.
Chenoor Mohammadi, Manouchehr Farajzadeh, Yousef Ghavdel Rahimi, Abbas Ali Aliakbar Bidokhti,
Volume 18, Issue 48 (3-2018)
Abstract
This study is aimed at estimating monthly mean air temperature (Ta) using the MODIS Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI), latitude, altitude, slope gradient and land use data during 2001-2015. The results showed that despite some spatial similarities between annual spatial patterns of Ta and LST, their variations are significantly different, so that the Ta variation coefficient is four times the one of the LST. Our analysis indicated that while in winter latitude is the key factor in explaining the distribution of the differences LST-Ta, in other seasons the role of slope and vegetation become more prominent. After obtaining the spatial patterns of LST and Ta, we estimated Ta using regression models in spatial resolution of 0.125˚. The lowest estimation error was found in the months of November and December with a high explanatory coefficient (R2) of 70% and a standard error of 1 ° C. On the other hand, the maximum error was obtained from May to August with R2 between 59 to 63% and a standard error of 1.6 ° C which is significant at the 0.05 level. In addition, result of evaluation of individual months showed that estimation of Ta is more accurate at the cold months of the year (November, December, January, February, and March). With considering different land uses, the highest R2 was related to waters and urban areas (96 to 99%) in warm months, and the lowest R2 was for mixed forest and grassland (between 15 and 36%) in cold months.
Yousef Ghavidel Rahimi, Manouchehr Farajzadeh, Esmaeel Lashani Zand,
Volume 18, Issue 51 (6-2018)
Abstract
In this study, the changes in the Khorramabad storm in the period of 1952 to 2015 have been investigated. For this purpose, data from meteorological codes 06 and 07 were received from the Meteorological Organization of the country, and after identifying the days of winding with dust storms and calculating their monthly frequency, monthly, seasonal and annual time series were analyzed. In this study, descriptive statistics, cluster analysis, linear and polynomial trend analysis, and nonparametric Mann-Kendal test were used to study the frequency variation of dust storms in Khorramabad station. The results of the research showed that the monthly frequency of dust storms in Khorramabad station in the middle of May, July and June is May and July, respectively, and from May to July (May to July), the frequency of storms in the dust and dust Khoramabad station is added that this issue is not related to the district heating and dry season. In the seasonal season other than the autumn, which is not frequent with frequent dust storms, in the rest of the seasons, especially in spring and summer, the seasonal concentration of dust storms in Khoramabad has been intensified. The analysis of the trend of time variation in the occurrence of dust storms in Khorramabad station showed that in most of the months of the year and in the three seasons of spring, summer and autumn, as well as in the annual period, there was a significant change in the frequency of dust storms in Khorramabad station. It is increasing with a relatively steep slope, indicating that in the future, the frequency of dust storms in Khorramabad station will be increased.
Hadi Zerafati, Yousef Ghavidel, Manuchehr Farajzadeh,
Volume 24, Issue 72 (3-2024)
Abstract
In this study, for statistical studies to determine days whit temperature above 50°c, the reanalyzed data of the nineteenth, twentieth and twenty-first centuries for the West Asia region (12 to 42.5 degrees north latitude and 36 to 63.5 degrees east longitude) have been used. Also, for synoptic analysis of extreme temperatures, HGT, AIR, UWND, VWND and SLP data were used. To conduct this research, first, extreme temperature data above 50° during the last 185 years were extracted for the study area in the hot season (June, July, August and September). After identifying days whit above 50° c, HGT data at the level of 500 hp were extracted and WARD clustering was applied. Finally, after identifying the clusters, the days whit the highest temperature that occurred in each cluster were selected for synoptic analysis. It can be said that all altitude patterns of geopotential meters (HGT) at the level of 500 hp show that the main cause of occurrence and distribution of temperatures above 50°c in West Asia are high-altitude (high-pressure) subtropical West Asia, which due to the location of its high-pressure core on the Zagros and sometimes the Arabian Peninsula, it has been referred to as the Zagros or Saudi high-pressure in terms of interest and taste. What is certain, however, is the high-pressure independent identity of the subtropical Azores, which has been mentioned in numerous articles and is known to be the main cause of the heat in the West Asian region, especially Iran.