Search published articles


Showing 63 results for Iran

, , , ,
Volume 18, Issue 48 (4-2018)
Abstract

 In the current disorderly world, securing benefits and achieving optimal security for countries alone is very difficult and unavoidable. Uniting with other countries and powers is a way to advance national goals and provide benefits, and bring more guarantees for countries to survive, advance, develop and peace. The factors and conditions that lead to the unification of the countries have been a lot of controversy and debate and have been analyzed from a variety of perspectives. Although geographic proximity and geographical similarity seem to be the prelude to creating unity between countries, the Iranian-Iraqi model in the Middle East is challenging this claim. Except for a few days in the early 20th century, the two countries were in conflict with the majority of the century, even an eight-year-old war between them. So the main question of this research is how geopolitical factors contribute to the unification of countries, and what are these factors and components in the strategic relationship between Iran and Iraq? This research is descriptive and based on library and document data. The results of the study show that the components of the internal environment (economic, socio-cultural components, geographic and political components, security and geopolitics), the regional external environment and, ultimately, the global environment have affected the quality and quantity of the strategic linkage of Baghdad-Tehran. The strategic link between the two countries is a function of the accompaniment and positive function of the triangle, which itself is based on more complex components.

 
Fatemeh Ghiasabadi Farahani, Faramarz Khoshakhlagh, Aliakbar Shamsipour, Ghasem Azizi, Ebrahim Fattahi,
Volume 18, Issue 48 (4-2018)
Abstract

The present research about the spatial changes of precipitation is mainly focused on western areas of Iran. Precipitation data for three seasons of fall, winter, and spring have been obtained from Esafzari Database, with 15*15 km spatial resolution in the form of a Lambert Cone Image System for the period from 1986 to 2015. To examine the prevailing pattern of precipitation in west of Iran, we have used geostatistical methods of spatial autocorrelation. The changes in precipitation trends have been analyzed using parametric and non-parametric analyses of regression and Mann Kendal. We have used MATLAB for analysis of the data. We have also used ArcGIS and Surfer for drawing maps.  The results of inter-decade changes of positive spatial autocorrelation of precipitation in west of Iran have indicated that there has been a decline in spatial extent of the positive spatial autocorrelation pattern in spring and fall, except for winter with a negligible increasing trend. Nevertheless, except for the second period, no considerable spatial changes were observed in the spatial pattern of precipitation in the region. However, there was a decreasing trend in the negative spatial autocorrelation of precipitation in annual and seasonal scales. The results of trend analysis have indicated that there was a decreasing trend in a vast area of the west parts of the country in annual scale and also in winter. Although there was an increasing trend in precipitation in fall and spring, but the trend was not significant in 95 % of confidence interval. The results of Man Kendal test have confirmed the results obtained from linear regression. 
 

Fakhri Sadat Fateminia, Behrouz Sobhani, Seyed Abolfazl Masoodian,
Volume 18, Issue 48 (4-2018)
Abstract

This study was performed to evaluate the extent of leaf area in Iran from (2002) to (2016) using Remote sensing. For this purpose, we extracted data collection and leaf area index for the Iranian territory from MODIS website. The database was established with programming in MATLAB software to perform mathematical and Statistical calculations repeated. After the analysis of the data in this software a monthly average long-term map was developed. The maps show that the central, East and South-East are almost empty of leaf area or seen very sparse in some areas. In contrast areas of leaves in the northern and western parts of Iran, are good, which generally includes fields, except forest Arasbaran and Hirkany. Precipitation and the temperature, is the main factors for the growth and development of plants, that these two conditions are enumerated in the west due to being on the way of westerly winds. Lowest leaf area index is for January and February and the highest average of leaf area is for May and June. Next, study of 15 years of leaf area index data by cluster analysis based on the calculation of Euclidean distance and Ward method, showed that all 12 months fit in the two main groups and, in fact, divided for two periods of strong and weak vegetation. In this analysis, , April during the cold period and October in the warm period of the year as the transition months and they are located on a separate cluster

Hasan Zolfaghari, Jafar Masoompourv Samakosh, Shabnam Chahvari,
Volume 18, Issue 49 (5-2018)
Abstract

The purpose of this study is predicting climate changes and investigating the effect of probable climate change on the growing degree-days in the northwest of Iran. For this purpose the climatic data of seven synoptic stations during a 25 years period (1985-2009) was collected including Oroomieh, Tabriz, Zanjan, Sanandaj, Ghazvin, Kermanshah, and Hamedan were used as the base period and thus temperature variations periods (2030-2011 and 2065-2046) through HadCM3 model was simulated. For the little power of temporal and spatial distinction of this model, its outputs were downscaled using LARS-WG software and presented under Emission Scenarios including A1B (moderate scenario), A2 (maximum or pessimistic scenario), and B1 (minimum or optimistic scenario). Calibration, verification and Performance Model with the rate of the adaption of observed data and the simulated measures through statistics , RMSE and MAE were analyzed. Finally, using the simulated temperature growing degree-day was calculated and compared under 4 Base temperature including 0°,5°,10°, and 15° centigrade in the basic span (1985-2009) and future span (2011-2030 and 2046-2065). The results of simulation show that temperature change in north-west areas under all three A1B, A2, and B1 scenario are increasing in the future, but the differences among these three scenarios in each period is inconsiderable. In total the most temperature increasing was detected as 0/7 centigrade in A2 scenario for 2011-2030 period and 2/3 centigrade under A1B scenario for 2046-2065 period. Generally with the temperature increasing, the amounts of growing degree-day without exception increases in review periods and under the four Base temperature. Under studied scenarios, the Bases temperature of 0° centigrade had the most and 15° centigrade had the least impressibility from climate changes, so that the most increasing in calculated degree-day measures under 0° and 15° centigrade bases in the first period to the basic scenario (1985-2009) respectively was simulated as 207/4 and 120/6 degree-day under A2 scenario and for the second period to the 752/5 and 463/5 degree-day under A1B scenario.
 


Abed Golkarami, , Afshin Motaghi, Hossien Rabiee,
Volume 18, Issue 49 (5-2018)
Abstract

Knowing Country and understanding the capacity of its perimeter and international environment are essential components of the economy that the foreign policy of any country should be on the basis of territorial and social. The country relies on its geopolitical foundations that they are influenced by its geographical location can affect codification foreign policy in the international economy. Hence, this paper with an analytical -descriptive method to survey the geopolitical and geographical foundations of Islamic Republic of Iran's economy. This paper show that Economy of Islamic Republic Iran away with its Geopolitical foundations and to achieve an effective economic on the closed surrounding and international environment, review in Geopolitical foundations of foreign policy that is mentioned in the form of five components are necessary and is inevitable. Hence, Islamic Republic of Iran to pursue these foundations in foreign policy strategy, not only effects will be in terms of political and cultural on international environment but also in terms geo-economic impact on international political economy.

Hossein Asakereh, Robab Razmi,
Volume 18, Issue 50 (6-2018)
Abstract

In the present study, the main aim was the spatial evaluation summer rainfall of northwest of Iran based on30 stations in northwest of Iran during 30 years of statistical period (1985-2014). An attempt, using geo-statistical modeling by ordinary least squares (OLS) and geographically weighted regression (GWR) procedures, was also made. The results represented that the GWR model with higher S2, lower residuals and lower RMSE is an optimized geo-statistical model for rainfall modeling of this area. This model can explain spatio-temporal rainfall distribution in northwest of Iran in a diversified topographical and geographical background. This model revealed that two spatial factors including elevation and slope, have the most important role in the summer rainfall behavior.Therefore Elevations in the mountainous and eastern parts of Lake Urmia, Latitude in the northern regions and slopes in the east of the region, have the most role in the spatial variations of summer precipitation in northwestern Iran.
 

Dr Younes Khosravi, Mehdi Dostkamian, Allah Morad Taherian, Amin Shiri Karim Vand,
Volume 18, Issue 50 (6-2018)
Abstract

Survey of advection of cold waves in Iran is the main aim of this study. In this regard, 45 synoptic stations were employed and studied. In order to investigate the thermal advection of cold waves, 1000, 850, 700 and 500 hp levels were reviewed and analyzed. Results indicated that cold waves in Iran most affected thermal advection caused by Tibet- Siberia, Siberias integrated Turkmenistan high-pressure, High pressure belt of Siberia - East Europe High pressure, Siberian high-pressure multi-core pattern and High-pressure belt of East of Caspian Sea integrated Black Sea High pressure. In the meantime, thermal advection of Siberian high pressure has been more impressive than other patterns. This system moved towards lower latitudes by anti-cyclone moving, So the cold weather of northern latitudes loss in lower latitudes North East of Iran, North West and Central parts of Iran. However, when Siberian high pressure combined with other patterns, its role in the advection of cold air have been considerable


Mrs Faranak Bahrami, Mr Abbas Ranjbar.s.a, Mr Ebrahim Fattahi,
Volume 18, Issue 50 (6-2018)
Abstract

Probable maximum precipitation (PMP), is the highest rainfall, which occurs at a given time in a basin. Hydrologist calculates the probable maximum flood for the design of overflow dams, by using the PMP, with two methods: statistical and synoptic. The purpose of this study is calculating PMP in the Ghomrood basin by using the synoptic method. For this purpose rain, meteorological data of the Iran’s Meteorological Organization were used. Also, the data on the 850 and 500 hPa levels were analyzed by the National Center for Environmental Prediction and the National Center for Atmospheric Research (NCEP-NCAR). In the following, the required synoptic maps produced and were studied. Iso rain maps were drawn, and depth-area-duration curves were determined. Eventually, PMP was estimated at 24, 48 and 72 hours. So that 24 hours PMP, by calculating 50 and 100 years return period of dew point estimated 51/75 and 54 mm respectively. Also for 48 hours PMP 128/25 and 132/05 mm, and for 72 hours PMP 97/9 and 101/75 estimated.

Mohammad Daraei, Dr Peyman Mahmoudi, Dr Behroz Sari Sarraf, Dr Ali Mohammad Khorshiddost,
Volume 18, Issue 50 (6-2018)
Abstract

Agricultural sector is most dependent on climate, and climate is the main determinant of time, location, production resources, and productivity of agricultural activities. The first event of zero-degree temperature in fall and its last event in spring is important for agriculture. This information is used to determine the species suitable for planting in each area. The present study seeks to identify the probability distribution function for extracting statistical characteristics of frost events in Iran. For this purpose, the history of early autumn and late spring frosts were extracted using daily minimum temperatures of 44 synoptic stations in Iran for a period of 30 years (1981-2010). After fitting various distributions, the best distribution was selected using Anderson-Darling goodness of fit test. Results indicated that most stations follow the Wakeby distribution. Based on the calculations, the first day of frost occurs in the highlands of the Northwest (Saqez, Hamedan, Ardabil, and Zanjan), Northeast (Bojnoord, Torbat-e Heydariyeh, Birjand, and also the Central Zagros Mountains (Shahr-e Kord), due to proximity with cold lands of the North such as Siberia and Northern Europe as well as early entry of westerly winds to this region compared to other regions of Iran will occur. And the latest event of the first day of frost occurs a little farther from the southern coast of Iran in a narrow strip along the coast and parts of the northern coasts (from Babolsar to Bandar Anzali). The earliest event of the last day of frost occurs in the same area in early February. The latest day of frost in Iran occurs in Azerbaijan, Kurdistan, Khorasan, and highlands of the province of Chahar Mahal and Bakhtiari

Mostafa Karimi, Mahnaz Jafari, Faramarz Khosh Akhlgh, Saeed Bazgir,
Volume 18, Issue 51 (7-2018)
Abstract

Spatio-temporal variations of factors affecting the occurrence of precipitation can lead to a change in its amount. The atmospheric moisture is one of the most important factors for precipitation formation. In this study, changes in atmospheric moisture and its relation with occurrence of seasonal wet and dry periods were investigated in Iran. The re-analysis data from the ERA interim European Center for Mid-Term Projections (ECMWF) was used during the period 1981-2011. The z index (ZSI) was used to extract wet and dry periods of autumn, winter and spring seasons. The seasons with the maximum percentage of wetness/drought occurrence during the above periods were selected. Vertical integrated divergence of the moisture flux was extracted in three layers of the lower, middle and upper atmosphere above Iran. The results revealed that in all three layers, moisture flux was maximum during wet period and decreased in dry one. In all layers in wet and dry periods, the moisture content imported to Iran increased during warm season as compared to cold seasons. In addition, the difference in moisture content in the warm season was less than cold seasons and has less variations. There was no significant changes in moisture at high levels in three seasons. In general, there was a significant difference in terms of the winds pattern in the wet and dry periods. The favorable conditions of flow patterns on the water surface of the region provide the condition for increasing transport of moisture to Iran. Although, the moisture transfer reduced due to deviation and change of direction of currents, in dry period especially in the lower layer, and hence increase the occurrence of dry periods in Iran.

Rahmatollah Shojaei Moghadam, Mostafa Karampoor, Behroz Nasiri, Naser Tahmasebipour,
Volume 18, Issue 51 (7-2018)
Abstract

The purpose of this study is to analyze and analyze Iran's precipitation over the past half-century(1967-2017). For this purpose, the average monthly rainfall of Iran during the statistical period of 50 years was extracted from Esfazari databases (Which is provided using data from 283 stations of Synoptic and Climatology). Regression analysis was used to analyze the trend and to analyze the annual and monthly rainfall cycles of Iran, spectral analysis was used. Investigation and analysis of monthly precipitation trend indicates that except for central Zagros (Lorestan and Chaharmahal va Bakhtiari and Gorgan areas, where rainfall in winter season has increased trend), in other parts of the country and in other seasons, the trend of decline Precipitation is prevalent. The study of Iranian rainfall cycles has been shown  that Most of Iran's rainfall cycles are 2 to 4 years old and have a short term course. Meanwhile, there are two middle-cycle 25-year cycles in January-July and two long-term 50-year cycles in March and December, indicating a trend in the March and December rainfall. The two months of February and October lacked a clear cycle. The analysis of the auto-correlation model of rainfall showed that the high spatial auto-correlation model in winter was consistent with the western, southwestern and coastal of the Caspian Sea and covered about 14% of the country's. The low spatial auto-correlation model is found in sparse spots in the southern, central and southeastern regions of the country in winter and spring, and covered about 7.5% of the country's. The results of this study indicate that the overall trend of Iran's rainfall is decreasing trend and only in winter, in the small regions of the country, the increase trend is observed.

, , ,
Volume 19, Issue 52 (3-2019)
Abstract

The heat waves today are one of the most important climatic hazards in the world. According to many scientists, the Severe and frequent occurrence of heat waves in recent years has been due to the emission of greenhouse gases and consequent increased global warming. The purpose of this study is to investigate changes in the frequency and intensity of heat waves As well as their relationship with Global land-ocean temperature anomalies and greenhouse gases in the north-west of Iran. At First, maximum temperature of two meters of the surface during the period from 1851 to 2014 for 164 years was obtained from NASA’s website, then the maps of heat waves was drawn and extracted. Then, we analyzed and evaluated the frequency and severity of the heat waves, as well as changes in the annual, decade, fifty years old fluctuations and their centenary were analyzed. To achieve the research objectives, Pearson and Spearman correlation methods, linear and polynomial regression and non-parametric Mann-Kendall test were used. The results showed that the frequency of occurrence of heat waves in the considered period interval is incremental and relevant, and the most frequency of occurrence was in decades. Also the intensity of the heat waves is associated with a relatively significant increase, and the most intense heat waves occurred in the decades of the late 20th and early 21st century until the present period. The results of the correlation coefficients indicated that the intensity and frequency of the heat wave incidence have a positive and significant correlation with the Global land-ocean temperature anomalies. The results of investigating the relationship between frequency and intensity of heat waves with 4 important greenhouse gases, including: (CO2, CH4, N2O, SF6), showed that, except for the positive and significant correlation of carbon dioxide gas with the most severe  heat waves in June, There was no meaningful relationship between them. The results of the Mann-Kendall test indicate an incremental and significant increase in the frequency and intensity of heat wave events in the North-West region of Iran.

Shadieh Heydari Tasheh Kaboud, Younes Khoshkhoo,
Volume 19, Issue 53 (7-2019)
Abstract

The aim of this research is the study of the climate change impacts on the seasonal and annual reference evapotranspiration time scales in some selected stations located in the West of Iran. To this purpose, four stations including Sanandaj, Saghez, Khorramabad and Kermanshah synoptic stations with enough long-term data were selected and the climate change impact on the reference evapotranspiration of these stations under two RCP2.6 and RCP8.5 scenarios in three future time periods including 2011-2040, 2041-2070 and 2071-2100 in comparison with the 1970-1999 base period was studied. The FAO-Penman-Montieth method was applied to calculating reference evapotranspiration and the CanESM2 general circulation model and SDSM downscaling method were used to simulating future climate conditions under the climatic scenarios. The results showed that the mean reference evapotranspiration in the annual and autumn and winter time scales in comparison to the base period will significantly increase for all of the studied stations under all of the scenarios and periods at the 0.01 confidence level. For spring season, the only significant change of the future period mean reference evapotranspiration compared to the base period in the all of the studied area will be a significant increase at the 0.01 confidence level in the 2071-2100 period under the RCP8.5 scenario and for the summer season, this significant increasing rate will occur in the 2041-2070 and 2071-2100 periods under the RCP8.5 scenario. The overall results of this research showed that the highest increasing rate of the future periods in comparison with the base period for all of the seasonal and annual time periods and for all of the studied area will under RCP8.5 scenario and in the 2071-2100 time periods. by comparing the reference evapotranspiration change rates between the different seasonal and annual scales, the results showed that the increasing rate of the mean reference evapotranspiration at the West of Iran will be very remarkably in the autumn and winter seasons compared to the other time scales.

Saeed Javizadeh, Zahra Hejazizadeh,
Volume 19, Issue 53 (7-2019)
Abstract

Drought is one of the environmental events and an inseparable part of climatic fluctuations. This phenomenon is one of the main characteristics of the various climates. Awareness of spatiotemporal behavior is effective in land planning. The spatial statistical methods provide the means by which they analyze the spatial patterns of random variables such as precipitation. In this study, using the rainfall data of 84 selected synoptic stations during the period of 30 years (1985 to 2014) in Iran, the spatial analysis of drought has been investigated. Initially, using SPI values (timescales 3, 6, 12, 24 and 48 months), drought and traumatic periods of the area were identified and using the Geostatistic Analyst extension, the drought was zoned by interpolation methods. Moran statistics were used to explain the pattern of drought in Iran. The results of Moran index for drought showed that the values for different years during the statistical period have a positive and close to one, indicating that the SPI drought index data has spatial self-correlation and cluster pattern. Also, the results of Z score and P-value values, clustering of a spatial distribution of drought, were confirmed.

Dr Mahmoud Hooshyar, Dr Behrouz Sobhani, Nader Parvin,
Volume 19, Issue 54 (12-2019)
Abstract

Early heat waves are extreme events that cause heavy losses in plant and animal life and cause many social and economic problems for communities. The purpose of this study was to identify synoptic patterns and statistical analysis of preterm heat waves in northwestern Iran. To do this, the maximum daily temperature data of March 14th was used for fourteen synoptic stations in the northwest of the country during the statistical period (1333-1393) Hijri Shamsi. Then, on the basis of the threshold, the Baldy index was selected for 61 days of heat wave. All statistical characteristics of the data were processed in SPSS software. They were The elevation data of the middle atmosphere of the atmosphere was extracted from a NCEP / NCAR database on a network with an arc 2/5 × 2/5 degree on the 0 to 70 degree eastern longitude and 0 to 60 degrees north latitude. The matrix was made up of 864 columns in 40 rows, with rows of days with thermal waves and elevation data on the columns on the middle of the atmosphere. The analysis of the basic components was performed on the algebraic data matrix matrix And 12 components that account for about 93 of the variations in pressure levels above 500 hp, were identified. To identify the coherent patterns, cluster analysis was performed on the scores of the components by the WARD integration method. Five types of pre-heat generation waveform patterns were identified. The results of this study showed that the premature heat waves in the northwest of Iran are due to high altitude formation in southern Arabia, the Aden valley and the center of Sudan at a level of 500 hpa and the formation of Sudan's low pressure in the sea level and the discharge of its tabs to the north and northeast of the region The case study (Northwest of Iran) also includes events occurring.
Miss Ensie Goharinasab, Dr Hossein Zabihi, Dr Shirin Toghyani,
Volume 19, Issue 54 (12-2019)
Abstract

Today, due to the transformation of the form of life and the proliferation of quantitative, gradually the qualitative and semantic concepts of the spirit of neighborhood in the minds of residents are dimmed. Factors such as immigration, Changes in the social composition of the population, Continuity of residence and persistence in neighborhoods have diminished. With the lack of infrastructure refinement, due to the lack of local community in the process of identifying problems and accurately measuring their needs, has led to a sharp divide between the efficiency of the neighborhoods and the needs of the inhabitants of the establishment and the neighborhoods have led to inefficiencies. While some modern neighborhoods are planned in a short time. On the contrary, the process is moving traditional neighborhoods. The main question is that the standards of a lasting Iranian neighborhood are up to date, from the point of view of the main inhabitants? The purpose of this paper is to answer the question that, What are the criterias of Up-to-date of persistent Iranian neighborhood, from the perspective of the main inhabitants? This analytical-qualitative study uses the Grounded theory method, Purposeful sampling of 5 neighborhoods with the statistical population is 86 people (until theoretical saturation) from the main residents. By means of position analysis, the final criteria were fixed. The parameters of security, sense of place, social status, spirituality and modern technology are one of the most important criteria for the survival of residents. The results show that the neighborhood, from the point of view of the inhabitants, goes beyond the broad concepts of elitist rigidity, more often than not, in simple mental and intriguing indicators, which require the recognition of the social reality of the people and the real needs of their daily lives with the collaborative interactive planning approach The dialectical relationship is between the opinion of experts and the views of residents in order to refine and update the neighborhood. The manifestation of the concept of Persistent Iranian Neighborhood is updated on the basis of principles: efficiency, persistence, dynamism and continuity in the form of conceptual model.

M Masoud Jalali, M Mehdi Doustkamian, A Amin Shiri Karim Vandi,
Volume 19, Issue 55 (12-2019)
Abstract

The aim of this study was to analyze the mechanism is precipitation Comprehensive Iran. For this purpose the daily precipitation data of 483 synoptic and climatology stations arranged. In this study, a comprehensive annual rainfall is said to have a minimum rainfall and above, 50% sequence coverage and have at least two days. Winter surround Iran on the condition of rainy days were extracted and examined. Then, to review and analyze the mechanism of atmospheric precipitation comprehensive synoptic and dynamic parameters such as moisture flux, vortices, ground level pressure, Geopotential, meridional and zonal wind component for the levels of 1000, 850, 700 and 500 HP studied and analyzed was. The results of this study showed that the widespread mechanism of dynamic and synoptic Winter country most affected by the composition of the atmosphere patterns such as the Mediterranean low pressure - low pressure core Persian Gulf, Iran, Central High East Europe closed low pressure, low pressure Urals - the Middle East, high pressure, low pressure Saudi Arabia - High pressure belt Europe and Siberia - Iran's low-pressure center. However most of the winter precipitation of moisture flux feed barley middle-Level interaction, particularly levels of 850 and 700 HP respectively. It was while change 500 hPa atmospheric dynamical mechanism is an important role in Iran's winter inclusive.


Hossein Naserzadeh, Fariba Sayadi, Meysam Toulabi Nejad,
Volume 19, Issue 55 (12-2019)
Abstract

This research was carried out with the aim of understanding the spatial displacement of rainfall nuclei as an effective factor in the future hydrological conditions in Iran. Two types of databases were used to conduct this research. The first type of data is the monthly precipitation of 86 synoptic stations with the statistical period of 1986-1989 and the second type of predicted data from the output of the CCSM4 model under the three scenarios (RCP2.6, RCP4.5, and RCP6) from 2016 to 2036. After collecting and modeling the data, the maps were mapped to the ARCGIS environment. The results of the study showed that the terrestrial nuclei in the whole of Iran's zone in the four seasons will have changes with a negative trend in the future. The coefficient of rainfall variation in the spring, summer, autumn and winter seasons will be 61.4, 101.4, 58.9 and 55.8 percent, respectively. The results of the triple scenario study showed that the displacement of the spring core from all north north of the country to the northwest of the country is limited to the common borders of Iran, Turkey and Armenia (the Maku and Jolfa region), but in summer, the high core The northern shores and parts of the northwest of the country will be transported to the south of the country (around Khash and Saravan). In the autumn, the high-lying zone, which is located throughout the northern part of the country, will move to two distinct nuclei in the central Zagros (Dena and Zadkouh areas) and southwest Khazars (Anzali and Astara areas), and the core of winter from the central Zagros And the Caspian region will be transferred to the northwest of Kurdistan and southwest of West Azarbaijan, which will be seen in all scenarios. Another point is that, in addition to reducing the boulders, in the future, drought areas will cover more of the country.
 

Ms Mahboobeh Pouratashi, Dr Mohammad Moradi, Dr Ebrahim Fattahi,
Volume 20, Issue 57 (6-2020)
Abstract

This research aims to study the impact of temperature and wind in the southern low-pressure system and its associated precipitation in the southern regions of Iran. As The southern low pressure system moves eastward, it crosses the southern regions of Iran, causing medium and heavy rainfall in these areas. In this study, two southern low-pressure systems that caused heavy rainfall on March 11, 2015 and January 17, 2000 in southern Iran were selected, analyzed and simulated using the numerical Weather Research and Forecasting (WRF) model. Since the wind and temperature fields play a significant role in the southern low-pressure systems, four experiments were performed for investigating the effects of temperature and wind on the intensification and weakening of the southern system. The simulation results showed that the simulation for the increased (decreased) temperature caused the weakened (intensified) the southern low pressure in the studied area. This result showed that the vertical structure of the southern low-pressure and its physical characteristics are similar to the mid-latitudes cyclones, and these systems were different from the thermal low pressures. The results of wind speed changes showed that the increased (decreased) wind speed simulation caused an increase (decrease) in relative vorticity, thus the southern low pressure was intensified (weakened). In both cases, the rainfall was decreased by the increased temperature simulation, and decreased temperature caused an increase in rainfall. It was also seen that the increase in wind speed caused the special humidity advection to be increased and then the rainfall increased. Also the amount of rainfall decreased when conditions did not provide for the advection of specific humidity or the wind speed reduced.

Dr. Sadegh Karami,
Volume 20, Issue 59 (1-2021)
Abstract

Importance of climate change is global. This issue to some extent has been out of human control. Human beings can only provide security and the community with knowledge and management against its negative consequences. On the basis of this research, the present paper analyzes the impact of climate change on Iran, on a small scale and applied to the central catchment area. The findings of the research indicate that climate change has shown the geographic region of Iran in terms of changing the rainfall pattern, decreasing precipitation and increasing its temperature. In the next step, these cases resulted in excessive withdrawal of groundwater aquifers and it has reduced the quality of underground water. This chain has led to the design of inter-basin water transmission projects, which is at least the result of the cycle of social tensions that has occurred in recent years. Considering the geographical extent of the basin and its belonging to one of the most frequent aspects of Iran's civilization, the set of consequences of climate change in the central catchment area, in addition to its impact on various social, political, economic and environmental layers, also has several scale effects. And its destructive effects go beyond national scale and to an extent beyond the scope of Iranian culture. In this regard, the research findings indicate that climate change in the central watershed is influential in many aspects of society and the country, so that if the current process continues, the current Iranian civilization will face a strategic challenge. To this end, at the end of the research, good water governance, as the best way to confront and control the negative consequences of climate change on the central catchment area, and Iran in general, has been argued.


Page 2 from 4     

© 2024 CC BY-NC 4.0 | Journal of Applied researches in Geographical Sciences

Designed & Developed by : Yektaweb