Search published articles


Showing 23 results for hejazizadeh

Dr Zahra Hejazizadeh, Dr Mehry Akbary, Zarin Jamshidiyini,
Volume 24, Issue 74 (9-2024)
Abstract

The present study investigated the impacts of NAO and ENSO on the precipitation in the southern shores of Caspian Sea. The accumulated monthly and annual rainfalls from 5 synoptic stations during the years (1956-2017) were taken through Islamic Republic of Iran Meteorology Organization (IRIMO) and the Multivariate Enso Indices (MEI) and NAO activity years are obtained from National Oceanic Atmospheric Administration. Pearson correlation was used to investigate the relationship between indices and precipitation amounts of selected stations. The results showed that there was a significant relationship between precipitation and NAO index in some months in all stations but this correlation was not following a particular pattern in all the stations. The maximum correlations were observed at Babolsar and   Anzali station and the least correlation was found at  Gorgan stations. The correlation between precipitation and different phases of NAO showed that there was a positive correlation between precipitation and negative phase of the index in Ramsar station and a negative correlation between precipitation and positive phase in the Gorgan station.The results of the Pearson correlation show a significant correlation between the MEI and rainfall amounts in the autumn in some stations in the early winter. In Review drought and wet periods with both Indicator it was observed that the behavior of the stations in the El Niño period, which was with different phases of the NAO was not entirely harmonious but the coefficient of 89% of rainfall in normal and more than normal during the period of El Niño showed that Elnino is better fitted to normal and more than normal rainfall in these stations also coefficient of 60%  of weak to severe droughts in the Lanina period in the selected stations Indicates that the LaNina phase was more related with severe droughts in the under studied period.

Mr Mohammad Reza Salimi Sobhan,, Mrs Zahra Beygom Hejazizadeh , Mrs Fariba Sayadi, Mrs Fatemeh Qaderi,
Volume 24, Issue 75 (12-2024)
Abstract

In examining natural hazards, such as hail, statistical analyzes can play a significant role. Due to the great importance of economic and side losses of hail in the northern part of Zagros with maximum frequency and damage, the necessity of studying its temporal and spatial location is felt very distinctly. Therefore, in order to estimate and estimate the probability of occurrence of this phenomenon, 10 hail data data of 10 synoptic stations of the region were used during the statistical period of 2014- 1992. In choosing the best method for calculating the distribution of precipitation probabilities, different types of probability distributions of discrete random variables were tested by means of both Kolmogorov and Anderson-Darling testsThe results showed that the good Poisson distribution test had a good fit for hail occurrence at a high level of 90.99%. Baneh station with the maximum frequency of hail precipitation has the lowest probability (0.023%) and Pearnshahr station has the most probable days without hail (0.39%). Therefore, the probability of occurrence of hail in Baneh has a higher percentage. In the next round, the negative binomial model satisfies the observations of this type of precipitation well. The calculation of probabilistic distributions by these two methods showed that the probability of occurrence of hail with the frequency of 1 to 6 times and more in the region and the highest probability is related to the frequency of 3 occurrences of 0.20%. At a frequency of 1 to 6 times, the probability of occurrence of this phenomenon is 5 times more than the probability that it will not occur, which indicates the region's high vulnerability to this type of climate risk.

.


Mr Milad Khayat, Ms Atefeh Bosak, Dr Zahra Hejazizadeh, Dr. Ebrahim Afifi,
Volume 25, Issue 76 (3-2025)
Abstract

By employing urban growth and development modeling, it is feasible to delineate a developmental trajectory that aligns with the specific circumstances of a city, considering environmental factors, natural elements, and population dynamics. The aim of this research is to propose an urban development model for Shushtar, which can serve as a valuable tool for analyzing the intricate processes of urban transformations. To accomplish this objective, two datasets were utilized: urban land use maps (including educational spaces, healthcare facilities, residential areas, etc.) and Landsat satellite imagery for key land uses such as rivers, barren lands, and forests, spanning three time periods: 1991, 2004, and 2014. These datasets were processed using GIS and MATLAB software. Existing urban land use maps were digitized and subsequently updated using Landsat satellite imagery. Subsequently, influential parameters in urban development were introduced as inputs to the Adaptive Neuro-Fuzzy Inference System (ANFIS) algorithm. After training the model for the years 1991 and 2004, the predicted results of urban development using the algorithm were compared with the actual situation in 2014, demonstrating a high accuracy of 93.7%. The land use change map, resulting from the change detection process, can be generated based on multi-temporal remote sensing images and their integration with urban land use maps, enabling an analysis of the associated consequences. The use of intelligent algorithms in this research has facilitated modeling with a high level of accuracy. The obtained results are deemed acceptable, and this development has also been predicted for the upcoming years.


Page 2 from 2     

© 2024 CC BY-NC 4.0 | Applied researches in Geographical Sciences

Designed & Developed by : Yektaweb