Search published articles


Showing 4 results for Northwest

Zeinab Ebrahimighalelani, Dr Javad Khoshhal Dastjerdi, Dr Hojatolah Yazdanpanah,
Volume 0, Issue 0 (3-1921)
Abstract

plants needs a certain amount of heat at the time of planting and during its growth period, The temperature requirements of the 704 single-cross cultivar of maize in Moghan weather conditions have been found in this study to determine its temperature requirements in its different growing stages in order to investigate the feasibility of its planting in the north west regions of Iran. Daily weather statistics presenting the minimum, maximum and average temperature of 51 Synoptic stations from Meteorological Organization of Iran have been used in this study, their statistical periods range from 1 to 30 years (1365-1395), the statistics and information about 5 main phenology stages of 704 single-cross variety maize which are recorded continually in Agricultural Weather Service of Moghan station in Pars Abad from 1390 to 1391 are provided. Then the 15-day averages from April 21st to July 22nd is obtained. The relationship between the temperature and the height in the linear regression is calculated .Map of heat supply date for seed sowing in all stations from the first half of May was drawn in the GIS. The plant collective growth degree days and the number of days in every phenology phase are calculated for all of the stations and the related maps are plotted.Then,the final map plotted by combining the layers thermal, height, slope and land use in the study area. The results of this study only 27.6% of the study area is able of maize cultivating.

Dr Batool Zeinali, Sima Khalili, Saideh Eiyni,
Volume 19, Issue 53 (7-2019)
Abstract

The aim of current research is atmospheric hazards climate zoning in Iran Northwest. So meteorological organization data were used in cases such as mean temperature , minimum temperature , maximum temperature, precipitation in monthly and daily scale for 13 synoptic stations in range of East Azerbaijan province, West Azerbaijan province) and Ardebil province during 26 years. (1990-2015) in this research , it was investigated 10 main atmospheric hazards such as famine or drought , hailstone,, heavy snow , thunder storm, severe precipitation, margin precipitation , blizzard , fogging , dust storm in range of Northwest bound. Then happening frequency maps were prepared with separating form for hazards by using Geographic information system. (GIS) Also spatial zoning maps were prepared for every class. Finally by combining all of hazards investigation; it was prepared Northwest region atmospheric hazards extensive map. Results show that, East, Southeast, center and West parts in Northwest region are located among most hazard zones based on happening frequency. But Northeast parts and zones have the least hazards. Also results express that blizzard and dust storm are main atmospheric hazards at Northwest regionThe highest hazard frequency in Northwest region relate to blizzard with 4148 hazards during 1990-2015 study period. The highest blizzard frequency in Ahar station is observed with 514 hazards. The second hazard in Northwest relate to dust phenomenon with 1948 cases. The highest frequency of mentioned case was observed in Maragheh station with 410 hazards. The third case in Northwest relate to thunder storm phenomenon with 1773 hazards. The sixth case relate to icing phenomenon with 1315 hazards meaning. The highest icing frequency is observed in Khalkhal station with 144 hazards. The seventh case relate to hailstone phenomenon at Northwest with 341 hazards. The highest of hailstone frequency is observed in Maragheh station with 56 hazards. The eighth case relate to fogging phenomenon with 333 hazards. The highest of fogging is observe in Ahar station with 135 hazards. The ninth case relate to famine or drought phenomenon at Northwest with 168 hazards. The highest of famine or drought frequency is observed in Urmia and Ardebil stations with 16 hazards totally. The highest margin precipitation is observed in Parsabad station with 19 hazards. The lowest frequency of margin precipitation relate to Makou and Khalkhal stations with 4 hazards totally.

Dr Mahmoud Hooshyar, Dr Behrouz Sobhani, Nader Parvin,
Volume 19, Issue 54 (12-2019)
Abstract

Early heat waves are extreme events that cause heavy losses in plant and animal life and cause many social and economic problems for communities. The purpose of this study was to identify synoptic patterns and statistical analysis of preterm heat waves in northwestern Iran. To do this, the maximum daily temperature data of March 14th was used for fourteen synoptic stations in the northwest of the country during the statistical period (1333-1393) Hijri Shamsi. Then, on the basis of the threshold, the Baldy index was selected for 61 days of heat wave. All statistical characteristics of the data were processed in SPSS software. They were The elevation data of the middle atmosphere of the atmosphere was extracted from a NCEP / NCAR database on a network with an arc 2/5 × 2/5 degree on the 0 to 70 degree eastern longitude and 0 to 60 degrees north latitude. The matrix was made up of 864 columns in 40 rows, with rows of days with thermal waves and elevation data on the columns on the middle of the atmosphere. The analysis of the basic components was performed on the algebraic data matrix matrix And 12 components that account for about 93 of the variations in pressure levels above 500 hp, were identified. To identify the coherent patterns, cluster analysis was performed on the scores of the components by the WARD integration method. Five types of pre-heat generation waveform patterns were identified. The results of this study showed that the premature heat waves in the northwest of Iran are due to high altitude formation in southern Arabia, the Aden valley and the center of Sudan at a level of 500 hpa and the formation of Sudan's low pressure in the sea level and the discharge of its tabs to the north and northeast of the region The case study (Northwest of Iran) also includes events occurring.
Seyed Hossein Mir Mousavi, Masoud Jalali, Enayet Asadolahi,
Volume 21, Issue 63 (2-2022)
Abstract

In this research, coding the rainfalls, prepares daily 45 stations with the statistical period of 20 years to zero and one codes to realize the daily dry periods in west and north west of the country and then, by establishing the main condition of occurrence of code one for 30 stations, we extracted the dry 4 to 10-day frequencies. And the results gained of considering the atmospheric weathering, shows that the most clear rotational pattern in sea level is related to Siberia-Europe high-pressure panels and sometimes both of them that increase the rotation on the region and also, the local high-pressure reinforcement and there is a high altitude in atmospheric middle level which is derived from sample patterns and is placed on the studied region and these sample patterns are from omega, bi-polar and rex models that they are on Russia and Scandinavian countries with some changes. The 500 level TAVA and omega shows well that in most regions, the air course, has decreasing case and so, we can result that placement of a high altitude in atmospheric middle and upper level on the high-pressures of the earth, causes the weather stability and lack of rainfall and as a result, the stability and durability of these conditions for several days, is related to sample patterns.         


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Applied researches in Geographical Sciences

Designed & Developed by : Yektaweb