Search published articles


Showing 5 results for Regcm4

Mostafa Karimi, Ghasem Azizi, Aliakbar Shamsipour, Lila Rezaee Mahdi,
Volume 16, Issue 41 (9-2016)
Abstract

In this study is simulation of role of topography in thickness and Inland penetration of sea-breeze in southern coast of the Caspian Sea. The RegCM4 as a regional scale climate model coupled with a lake model and also the reanalysis data of NCEP / NCAR used to determine of the initial conditions of the model. The model was run during the peak of sea breeze on the southern coast of the Caspian Sea (July 2002) in both conditions (with mountains) and (without mountains). the outputs indicated that in without topography condition depth of the sea breeze will increase to the current position the southern slopes of the Alborz Mountains ( latitude ᵒ35 ) but the land breeze in the area is gone. The maximum speed and changes in wind direction observed on the coast southeast and central Alborz respectively. In addition with non-topography conditions, the thickness of sea breeze in different areas significantly has increased with the highest rate on the eastern coast (longitude ᵒ53).


Mohsen Hamidianpour, Abass Mofidi, Mohammad Saligheh, Bohloul Alijani,
Volume 16, Issue 43 (12-2016)
Abstract

In this study, the interaction between atmosphere and earth surface and its effect on the simulation of Sistan wind structure in the East of Iranian plateau is investigated. For this purpose, four experiments have been carried out with RegCM4, with horizontal resolution of 20 km. In non-topography experiments, the model was implemented in three different conditions. The results indicated that the Sistan wind is a multi-scale climate phenomenon which will be affected by topography both in wind intensity and in wind direction in the lower troposphere. In the synoptic scale, the pressure gradient which dominates between Pakistan heat low and the Turkmenistan anticyclone (Caspian Sea high pressure) can create a large scale background northerly flow in the lower troposphere which will be passing through the whole area in the east of Iranian Plateau. Furthermore, in meso to regional scales, the topography of the area would be responsible for creation and maintenance of a Low Level Jet (LLJ) through a mechanical and thermal forcing. the mechanical forcing of mountains are responsible for appearance of two LLJ cores across eastern borders of Iran which their preference locations would be around Atishan Desert in the north and upstream of Hamon Lake in the south. As a general result, by eliminating the topography in all non-topography experiments, the LLJ core will disappear on upstream of Hamon Lake as the most important mechanical forcing of the mountains. However, eliminating only the southern Khorasan Mountains will accelerate the north LLJ core in the Atishan Desert, while the LLJ core on the upstream of Hamon Lake will disappear over the Iran Borders at the same time. To evaluate the influence of thermal forcing of the mountains on Sistan wind structure, the total heating, as a residual term of thermodynamic equation, is calculated. The results indicate that mountains have a significant role to building a local low level circulation in the east of Iranian Plateau.


Kamal Omidvar, Reza Ebrahimi, Mohammad Kykhsrvy Kayani, Ghasem Lkzashkoor,
Volume 16, Issue 43 (12-2016)
Abstract

The aim of this study was to investigate the effects of global warming on where the slope changes when the monthly temperature in Iranian territory over the coming decades (2050-2015). The simulated temperature dynamic model EH5OM subset Hybrid Models atmospheric circulations (GCM) selection and data model of the Center for Theoretical Physics Salam (Italy) were derived from emission scenarios A1B scenario was chosen given the scenario of 2100 -2001 found that from 2050 to 2015 were used in this study data is then output the data in the fourth edition of the regional climate model (RegCM4) Linux environment was fine scale output data Downscaling model with dimensions of 27/0 * 27 / Degrees latitude is where the dimensions of 30 x 30 km area of ​​approximately cover the average temperature of the matrix deals 13140 2140 * was extracted. Finally, the slope of the average monthly temperature during the period under study by Mann-Kendall slope age and matrix computation in MATLAB software 13140 * 12 respectively. Results show rising temperatures in March and April to June, more than 90% of the country, that it will be spring's warmer. Increasing the temperature in the winter months and spring mountainous parts of the western half of the country is warming the cold regions of Iran. Temperature negative trend in October and November in the northern part of the eastern half of the region's countries could be indicative of colder temperatures in the northern West.


Ghasem Keikhosravi,
Volume 17, Issue 47 (12-2017)
Abstract

In this study, precipitation simulated annual and seasonal in East and North-East of Iran ,in 1987-2011, by using RegCM4 dynamic model in two case; with and without using post-processing technique. The required data for RegCM4 model with NetCDf format, received from ICTP center. For the implementation of the main dynamic model, Convective precipitation test scheme and the horizontal resolution, performed for 2007. According to the test, Kuo Schema had less error than Emmanuel and Gurl schemes in Precipitation and region temperature modeling. Horizontal resolution selected 30 Km. After model implementation with Gurl schema and 30 Km horizontal resolution, Precipitation and temperature output post- processed using MA model. According to results, in the study area, during 2006-2011 verification period, average annual rainfall raw bias of RegCM4 model was calculated and post-processed equal to 8.3 millimeter and 61.04 respectively. Briefly in the annual time scale, in 75% of studied stations, post-processing is effective and MA model is more efficient. In seasonal scale, bias error of average precipitation is equal to 54.99 millimeter in the winter, 27011 millimeters in the spring, -3.6 millimeter in the summer and 7.21 millimeter in the fall. Simulation of the temperature data in the stations using RegCM4 and MA model in north-east of Iran, revealed high performance. Bias error of average temperature is equal to -2.78 for RegCM4 model and post-processed equal to -0.05. In all stations, modeled Annual temperature and observational data has difference less than 0/1 ° C. In seasonal scale, the mean bias error range according ° C is equal to -4.1 in the winter, -4.09 in the spring, -1.8 in the summer and -1.5 in the fall.
 


Miss Motahhareh Zargari, Dr Mahdi Boroughani, Dr Alireza Entezari, Dr Abbas Mofidi, Dr Mohammad Baaghideh,
Volume 24, Issue 72 (6-2024)
Abstract

The aim of the present study is to dynamically model the spatial-temporal characteristics of dust in the south and southeast of Iran with REG-CM4 model using monthly dust data and RegCM4 data. For this purpose, the dust distribution of the IDW method along with the dust diagrams were plotted. The RegCM4 model was implemented with the paired Lambert image imaging system for 40 km horizontal separation with the paired chemistry model. The location of monthly and annual dust distribution shows the highest amounts of dust for the cities of Zabol, Bandar Abbas, Zahedan and Jask compared to Sirjan, Kahnooj and Lar stations. The highest frequency of dust in Sistan and Baluchestan (48%), Hormozgan (27%) and Fars provinces with 16% and the lowest frequency for Kerman province (9%). In general, the summer seasons (at Sistan station) and the winter (Kerman station) have the highest and minimum dust events, respectively. The time survey also has the highest amount of dust for the warm months of the year and the lowest for the cold months of the year. July at Zabol station and November and December at Sirjan station have the highest and lowest dust levels, respectively. The RegCM4 climate model also shows maximum dust on the southeast, south and south coasts for different variables.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Applied researches in Geographical Sciences

Designed & Developed by : Yektaweb