Search published articles


Showing 2 results for Sdsm Model

Alimohammad Khorshiddoust, Behrooz Sarraf, Bagher Ghermez Cheshmeh, Mrs Fatemeh Jafarzadeh,
Volume 17, Issue 47 (12-2017)
Abstract

In recent years, the severe fluctuations in precipitation have affected various parts of the country. On the southern coasts of the Caspian Sea, precipitation as one of the important climatic parameters has undergone changes due to global climate change. In the present study, we tried to evaluate the effect of climate change on rainfall in this region by applying a suitable model. In this study, observational period rainfall (1961-2001) was analyzed. the output of the HadCM3 model was used. At first, seven synoptic stations were selected and their data were analyzed in terms of accuracy, and length of statistical period, and lost data was restored. The AOGCM data were simulated using the SDSM model and the rainfall values were simulated for the observation period. After confirming the matching of the simulated data with observational data, the values of the Future (2039-2011) is estimated. The estimation errors of the SDSM model were calculated monthly by MBE and MAE criteria, and then compared. The output of the SDSM model was used to study the total annual precipitation in days with rainfall of more than 1 mm in the observation period and the upcoming period (2011-2039) by the R-Climdex model and the values of the PRCPTOT index Became zoning in the Future. The results showed that the model error in season with high rainfall is more than seasons with low rainfall. On a monthly scale, the maximum error occurred in the months of September, October, November and December. The maximum error in the fall and the minimum error was calculated in the spring and April and May months. According to the results, the total annual rainfall in the period of 2039-2011 will decrease in Anzali, Babolsar, Gorgan and Noshahr stations and rainfall will increase in stations of Astara, Ramsar and Rasht. Geographical distribution of selected were 5 sites in the Khuzestan, 20 sites in Bushehr, 24 sites in Hormozghan and 12 sites in Sistan and Baluchistan provinces. In total, 9000 sites were selected with a 2 km2 were suitable for large scale microalgae cultivation. The total area of these sites were estimated to be 18000 km2. The highest number of proper sites were found in Hormozghan province and lowest numbers of sites were found in Khuzestan province. The availability of technical service, carbon dioxide point resources from oil and gas units are an advantages for microalgae related activities in the Bushehr and Khuzestan provinces. The higher quality of water in the Sistan and Baluchistan province is an advantages for development of microalgae biomass production in the area.
 

nk href="moz-extension://8b922523-7922-435a-ac74-8ddb59e9beaf/skin/s3gt_tooltip_mini.css" rel="stylesheet" type="text/css" >
nk href="moz-extension://8b922523-7922-435a-ac74-8ddb59e9beaf/skin/s3gt_tooltip_mini.css" rel="stylesheet" type="text/css" >
Shadieh Heydari Tasheh Kaboud, Younes Khoshkhoo,
Volume 19, Issue 53 (7-2019)
Abstract

The aim of this research is the study of the climate change impacts on the seasonal and annual reference evapotranspiration time scales in some selected stations located in the West of Iran. To this purpose, four stations including Sanandaj, Saghez, Khorramabad and Kermanshah synoptic stations with enough long-term data were selected and the climate change impact on the reference evapotranspiration of these stations under two RCP2.6 and RCP8.5 scenarios in three future time periods including 2011-2040, 2041-2070 and 2071-2100 in comparison with the 1970-1999 base period was studied. The FAO-Penman-Montieth method was applied to calculating reference evapotranspiration and the CanESM2 general circulation model and SDSM downscaling method were used to simulating future climate conditions under the climatic scenarios. The results showed that the mean reference evapotranspiration in the annual and autumn and winter time scales in comparison to the base period will significantly increase for all of the studied stations under all of the scenarios and periods at the 0.01 confidence level. For spring season, the only significant change of the future period mean reference evapotranspiration compared to the base period in the all of the studied area will be a significant increase at the 0.01 confidence level in the 2071-2100 period under the RCP8.5 scenario and for the summer season, this significant increasing rate will occur in the 2041-2070 and 2071-2100 periods under the RCP8.5 scenario. The overall results of this research showed that the highest increasing rate of the future periods in comparison with the base period for all of the seasonal and annual time periods and for all of the studied area will under RCP8.5 scenario and in the 2071-2100 time periods. by comparing the reference evapotranspiration change rates between the different seasonal and annual scales, the results showed that the increasing rate of the mean reference evapotranspiration at the West of Iran will be very remarkably in the autumn and winter seasons compared to the other time scales.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Applied researches in Geographical Sciences

Designed & Developed by : Yektaweb