Search published articles


Showing 4 results for Wind

Miss Sorayya Derikvand, Dr Behrooz Nasiri, Dr Hooshang Ghaemi, Dr Mostafa Karampoor, Dr Mohammad Moradi,
Volume 0, Issue 0 (3-1921)
Abstract

sudden stratospheric warming has an obvious effect on the Earth's surface climate. In this research, the changes in precipitation during the occurrence of this phenomenon have been investigated. For this purpose, after revealing the warmings that occurred during the studied period (1986-2020), 18 warmings were identified. The 5th decile and 9th decile of precipitation were calculated for the precipitation data of 117 stations. And the size of the difference from the normal rainfall was checked in two ways. First, the precipitation at the time of warming was compared with the long-term average, and then the trend of changes in precipitation at three times before thewarming, at the same time as the warming, and after the warming was finished. Finally, these results were obtained. Warmings according to the month in which they occur; They have a different effect on the amount of precipitation. In the sudden stratospheric warming that occurred in December, January and February, the northwest experiences the most rainfall changes and is above normal, and the probability of rainfall above the 9th decile increases up to 65%. Western and southwestern regions also have higher than average rainfall and the probability of heavy rainfall is high. Precipitation on the shores of the Caspian Sea shows an inverse relationship with sudden stratospheric warming, so in all the investigations of this research, the lack of precipitation at the time of warming in these areas is significant. Southern regions have less than normal rainfall in all sudden stratospheric warming events. The center of Iran has higher than average rainfall in the sudden stratospheric warming months of March. Eastern Iran also has heavy rains compared to normal during the sudden stratospheric warming months of March.

 
Mohsen Hamidianpour, Abass Mofidi, Mohammad Saligheh, Bohloul Alijani,
Volume 16, Issue 43 (12-2016)
Abstract

In this study, the interaction between atmosphere and earth surface and its effect on the simulation of Sistan wind structure in the East of Iranian plateau is investigated. For this purpose, four experiments have been carried out with RegCM4, with horizontal resolution of 20 km. In non-topography experiments, the model was implemented in three different conditions. The results indicated that the Sistan wind is a multi-scale climate phenomenon which will be affected by topography both in wind intensity and in wind direction in the lower troposphere. In the synoptic scale, the pressure gradient which dominates between Pakistan heat low and the Turkmenistan anticyclone (Caspian Sea high pressure) can create a large scale background northerly flow in the lower troposphere which will be passing through the whole area in the east of Iranian Plateau. Furthermore, in meso to regional scales, the topography of the area would be responsible for creation and maintenance of a Low Level Jet (LLJ) through a mechanical and thermal forcing. the mechanical forcing of mountains are responsible for appearance of two LLJ cores across eastern borders of Iran which their preference locations would be around Atishan Desert in the north and upstream of Hamon Lake in the south. As a general result, by eliminating the topography in all non-topography experiments, the LLJ core will disappear on upstream of Hamon Lake as the most important mechanical forcing of the mountains. However, eliminating only the southern Khorasan Mountains will accelerate the north LLJ core in the Atishan Desert, while the LLJ core on the upstream of Hamon Lake will disappear over the Iran Borders at the same time. To evaluate the influence of thermal forcing of the mountains on Sistan wind structure, the total heating, as a residual term of thermodynamic equation, is calculated. The results indicate that mountains have a significant role to building a local low level circulation in the east of Iranian Plateau.


Mrs. Atefeh Shahmohammadi, Dr. Ali Bayat, Mr. Saeed Mashhadizadeh Maleki,
Volume 22, Issue 67 (12-2022)
Abstract

Air pollution is one of the major problems in large cities, which can be harmful to human health and the environment. Isfahan is one of the most polluted cities in Iran.
 Its geographic location and low wind speed, industrial activities, transportation, agriculture, and other human activities have created critical air pollution conditions for the city. Nitrogen dioxide is an important pollutant of air pollution, which is monitored using ground stations and satellite measurements. In this paper, daily data of nitrogen dioxide from Ozone Monitoring Instrument (OMI) satellite sensor, wind and surface temperature of Isfahan Meteorological Station data were used between October 2004 and May 2016. The average amount of nitrogen dioxide in the measured range is .The highest amount of nitrogen dioxide ( ) was observed in December and the lowest ( ) was observed in July. The standard deviation of the winter season ( ) is higher than the summer season ( ). The correlation coefficient of nitrogen dioxide with wind and temperature was -0.41 and -0.54, respectively, which indicates the higher importance of temperature in nitrogen dioxide changes. After the formation of the time series, the average monthly nitrogen dioxide content was determined using spectral analysis of least squares of statistically meaningful peaks corresponding periods. These statistically meaningful peaks corresponding periods have been eliminated from the mean monthly nitrogen dioxide time series, and with the linear fit on the residual time series, the trend has been calculated. The nitrogen dioxide trend for Isfahan is per year with 95% confidence.
 
Mohammad Kazemi Garajeh, Behnam Salmani, Mohammad Hossein Rezaei Moghaddam,
Volume 24, Issue 74 (12-2024)
Abstract

The purpose of the present study is to assess the land surface temperature in relation to landuse for the city of Tabriz using remote sensing technology and GIS. Landsat 8 satellite image was used to map the land surface temperature for the study area. Atmospheric correction was applied to the desired image using the FLAASH method and the land surface temperature was estimated using the split-window algorithm for the study area with an accuracy of 1.51 degrees. Landuse map of Tabriz city in 6 classes was obtained using the object-based approach in eCognition software with an accuracy of 90/03. The results of studying the relationship between land surface temperature and landuse indicate that agricultural lands with a temperature of 18.22 °C have the highest land surface temperature. Also, water areas (rivers) have the lowest (10.30 °C) land surface temperature, because of their radiant power close to one. The research results also indicate that the split-window algorithm provides reliable results for land surface temperature estimation that can be used in environmental studies and earth sciences.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Applied researches in Geographical Sciences

Designed & Developed by : Yektaweb