جستجو در مقالات منتشر شده


7 نتیجه برای قائمی

دکتر زهرا قصابی، دکتر هوشنگ قائمی، آقای ابراهیم میرزایی،
دوره 0، شماره 0 - ( مقالات آماده انتشار(موقت) 1300 )
چکیده

ساختار همرفت مرطوب ژرف می‌تواند تحت تاثیر چینش باد، انرژی پتانسیل در دسترس همرفتی، رطوبت نسبی و توزیع قائم هر یک از این متغیرها در کنار سایر عوامل موثر دیگر قرار گیرد که در این بین چینش باد نقش مهمتری در ایجاد همرفت ایفا می‌کند. این امر به سبب فرآیندهای بزرگ و همدید مقیاس، همراه با تعدیل انرژی پتانسیل در دسترس همرفت[1] و بازدارنده همرفت[2]، شرایطی مناسب برای ایجاد همرفت بوجود می‌آورند. نقش میانگین بزرگ مقیاس، سبب کاهش بازدارنده همرفت می‌شود، ولی سرعت قائم حتی چند سانتی‌متر بر ثانیه می‌تواند تاثیر آشکاری بر گمانه­زنی محیط داشته باشد. همچنین وجود ناپایداری پتانسیلی معمولاً عاملی مهم در آغازگری همرفت مرطوب ژرف[3] به شمار می­رود. دیده می‌شود هنگامی که دما به نقطه بحرانی می‌رسد و بازدارنده همرفت حذف می‌گردد، همرفت ژرف مرطوب آغاز می‌شود. در حالتی‌ که بسته هوایی که از فراز لایه‌ پایدار کم ارتفاع زیرین بالا می‌رود، ممکن است دارای انرژی بازدارنده همرفتی نسبی کم و انرژی پتانسیل همرفتی آزاد نسبی زیاد باشد. این امر سبب پشتیبانی همرفت مرطوب ژرف ارتفاع یافته می‌شود. توده هوای گرم، آغازگری جریانات بالاسو را تداوم می‌بخشد و تکوین بعدی همرفت به فراسنج‌هایی مانند چینش باد قائم و کلاهک وارونگی محیط در کنار سایر فراسنج‌ها، بستگی دارد. سامانه‌های بزرگ مقیاس همرفتی می‌توانند با واداشت‌های کمتری سبب بالاروی گسترده توده هوا بر روی سطح جبهه تا تراز همرفت آزاد شوند.
 
[1] convective available potential energy
[2] convective inhabitation
[3] deep moist convection

ثریا دریکوند، بهروز نصیری، هوشنگ قائمی، مصطفی کرم پور، محمد مرادی،
دوره 0، شماره 0 - ( مقالات آماده انتشار(موقت) 1300 )
چکیده

گرمایش ناگهانی پوشن سپهری، به طور بارزی بر آب و هوای سطح زمین اثر گذار است. در این پژوهش تغییرات بارش در زمان رخ داد این پدیده مورد بررسی قرار گرفته است. بدین منظور، پس از آشکارسازی گرمایش­ های رخ داده در طول دوره­ی مورد مطالعه(1986-2020)، 18 گرمایش شناسایی شد. دهک 5 برای آستانه­ی نرمال و دهک 9 برای آستانه­ی بارش­های سنگین برای داده­های بارش 117 ایستگاه محاسبه شد. و میزان اختلاف از نرمال بارش به دو صورت بررسی شد. ابتدا، بارش در زمان وقوع گرمایش،با میانگین بلند مدت، به تفکیک ماه مقایسه­­ شد و  سپس روند تغییرات بارش در قبل، هم زمان و  بعد از وقوع گرمایش بررسی شد. در نهایت این نتایج به دست آمدند. گرمایش­های رخ داده در هر ماه اثر یکسانی بر تغییرات بارش اعمال نمی­کنند. در گرمایش­های رخ داده در ماه دسامبر، ژانویه و فوریه، شمال­غرب در بیشترین تغییرات بارشی و بالاتر از نرمال به سر می­برد و درصد احتمال بارش­های بالای دهک 9، تا 65 درصد افزایش می­یابد. نواحی غربی و جنوب غرب نیز دارای بارشهای بالاتر از میانگین هستند و نیز احتمال وقوع بارش­های سنگین، بالا می­باشد. بارش در سواحل دریای خزر ارتباط معکوسی را با گرمایش نشان می­دهد به طوری در تمام بررسی­های این پژوهش کمبود بارش در زمان رخ داد گرمایش در این نواحی چشمگیر است. مناطق جنوبی در تمام رخ­داده­های گرمایش دچار بارش کمتر از نرمال هستند. مرکز ایران در گرمایش­های ماه مارس دارای بارش بالاتر از میانگین می­باشد. شرق ایران نیز در گرمایش­های ماه مارس دارای بارش­های شدیدی نسبت به نرمال می­باشد.

 
زهرا حجازی‌زاده، ابراهیم فتاحی، هوشنگ قائمی،
دوره 1، شماره 1 - ( جلد 1 شماره1- 1381 )
چکیده

چکیده
خشک‌سالی یکی از پدیده‌های آب و هوایی و از جمله رخدادهای مصیبت‌باری است که هر ساله خسارت‌های زیادی را باعث می‌شود. یکی از راه‌های تعدیل خشک‌سالی، ارزیابی و پایش خشک‌سالی بر اساس شاخص‌هایی است که بتوان بر اساس آن میزان شدت و تداوم آن را در یک منطقه تعیین نمود. در مقاله حاضر روند خشک‌سالی (شدت، تداوم و سطح درگیر با خشک‌سالی) در استان چهارمحال و بختیاری با استفاده از شاخص بارش استاندارد شده برای بازه‌های زمانی 3، 6، 12، 24 و 48 ماهه مورد مطالعه قرار گرفته است. ویژگی این روش کمک می‌کند تا کمی از رخدادهای خشک‌سالی را در مکان ها و مقیاس‌های زمانی متفاوت مقایسه کنیم. به منظور پایش خشک‌سالی از اطلاعات بارندگی ماهانه ایستگاه‌های سینوپتیک و اقلیم‌شناسی استان طی دوره آماری 2001 - 1960 استفاده شد. با استفاده از نرم‌افزار کامپیوتری SPI محاسبات مربوط به شاخص بارش استاندارد شده انجام گرفت؛ نتایج بررسی‌‌ها نشان داد که فراوانی رخداد دوره‌های خشک کوتاه‌مدت (سه ماهه) در کلیه ایستگاه‌ها بیشتر از 80 مورد است، در حالی که فراوانی رخداد دوره‌های خشک بلندمدت در مقیاس‌های زمانی 12، 24 و 48 ماهه خیلی کمتر می‌باشد، همچنین تداوم دوره‌های خشک در بازه‌های زمانی 12، 24 و 48 ماهه نسبت به بازه‌های زمانی 3 و 6 .ماهه خیلی بیشتر است. بنابراین برای برگشت به حالت نرمال در مورد خشک سالی‌های هیدرولوژیکی (آب‌های زیرزمینی و سطحی) ماه‌ها زمان نیاز است در حالی که برای بـازه‌های کوتاه‌مدت3 و 6 ماهه (خشک‌سالی‌های کشاورزی و رطوبت خاک) بارش‌های روزانه می‌توانــــداوضاع را تعدیل کند تا به حالت نرمال برگشت نماید. این بازه‌های زمانی برخورد خشک‌سالی را نسبت به دست رسی منابع مختلف آب بازگو می نماید. واکنش رطوبت خاک نسبت به نابهنجاری بارش کوتاه مدت است در حالی که پاسخ آب‌‌‌‌های زیرزمینی، جریان رودخانه‌ها و ذخیره منابع آبی نسبت به کمبود بارش، فرآیندی بلند مدت است.
الهام یاراحمدی، مصطفی کرمپور، هوشنگ قائمی، محمد مرادی، بهروز نصیری،
دوره 19، شماره 53 - ( 4-1398 )
چکیده

بررسی رفتار بارش  در  بعد مکانی – زمانی و تعیین آستانه های تحمل مناطق مختلف جغرافیایی با توجه به پوشش گیاهی، زندگی جانوری و فعالیت های انسانی، از ضروریات هر گونه تصمیم گیری در محیط است. بدین منظور، داده­های بارش 27 ایستگاه همدیدی در دوره 60 ساله  از سازمان هواشناسی  دریافت  و  پس از بررسی کیفی داده­ها توزیع زمانی و مکانی میانگین، ضریب تغییرات، چولگی و توزیع احتمال تجربی 20% بیشینه و کمینه ماهانه و فصلی پاییز و زمستان، برای یک دوره 60 ساله (2010-1951)، دو دوره 30 ساله (11951-1980)،(1981-2010) و دو دوره 10 ساله (2010-2001)، (1951-1960)محاسبه با استفاده از سیستم اطلاعات جغرافیایی(GIS) پهنه بندی شد. بررسی­ها نشان می­دهد، بجز سواحل دریای کاسپین، تغییرات کمی بین الگوهای پاییز و زمستان وجود دارد. میانگین بارش از مناطق میانی سواحل جنوبی کاسپین به سوی غرب و شرق کاهش یافته­است. در دیگر نواحی کشور، تغییرات مکانی و زمانی بارش در فصل پاییز بسیار زیاد و از شمال بسوی جنوب با کاهش میانگین و افزایش ضریب تغییرات و چولگی همراه است. در زمستان ضمن حفظ الگوی پاییز، میانگین بارش افزایش و ضریب تغییرات کاهش می­یابد. میانگین بارش 30 ساله دوم و 10 ساله آخر زمستان، نسبت به دوره­های 30 و 10 ساله اول و نیز دوره 60 ساله در اغلب ایستگاه­ها کاهش داشته­است که با  نتایج آزمون من­کندال تطابق دارد. بررسی20 درصد حد کمینه و بیشینه بارش فصلی نشان می­دهد که از شدت و گستره عملکرد سامانه­های بارشی فراگیر فصل زمستان در دوره 30 ساله دوم کاسته شده است. همچنین فراونی و شدت خشکسالی فصل پائیز در 30 سال دوم و 10 سال آخر بیشتر شده­است. بیشترین کاهش در بخش غربی و شرقی ساحل کاسپین و در شمال­غرب رخ داده است که با توجه به زمینه­های فعالیت و تمرکز جمعیت، توجه ویژه مدیران را می­طلبد.

حسین علی روح بخش سیگارودی، مصطفی کرمپور، هوشنگ قائمی، محمد مرادی، مجید آزادی،
دوره 19، شماره 55 - ( 10-1398 )
چکیده

بررسی تغییر پذیری الگوی فضائی- زمانی بارش که می تواند منجر به تغییر اقلیم شود، به دلیل تاثیر گذاری شدید آن در عرصه های مختلف مورد توجه می باشد. به همین منظور پس از دریافت داده های بارش روزانه ۲۷ ایستگاه همدیدی در دوره ۶۰ ساله(2010-1951) کیفیت آن بررسی و مجموع بارش ماهانه و آماره های لازم برای ادامه فرایند تحقیق از قبیل میانگین، ضریب تغییرات، چولگی، برآورد احتمال 20% حد بالای بیشینه و کمینه میانگین بارش از طریق تجربی برای یک دوره ۶۰ ساله و دو دوره ۳۰ ساله(1980-1951 و 2010-1981) و دو دوره 10 ساله (1960-1951 و 2010-2001) برای هریک از فصول بهار و تابستان محاسبه گردید. بررسی ها تغییرات نسبتا کمی را در الگوهای بارش بهار و تابستان، در سواحل کاسپین، شمال غرب- غرب، طی 30 ساله و 10 ساله دوم نسبت به دوره 60 ساله و 30 ساله و 10 ساله اول نشان می دهد. به طور کلی از شمال و شمال غرب به سوی جنوب و جنوبشرق از میانگین بارش کاسته و بر مقدار ضریب تغییرات و چولگی افزوده می شود. به غیر از حوزه کاسپین، در بقیه ایستگاه ها میانگین بارش بهاره بیشتر از میانگین بارش دوره تابستان است. تفاوت آشکاری در ویژگی های بلند مدت بارش و تغییرات آن وجود دارد. نکته قابل توجه افزایش ضریب تغییرات دوره 30 ساله و 10 ساله دوم نسبت به دوره های متناظر در همه ایستگاه ها است که بیانگر کاهش میانگین ماهانه و فصلی بارش بهار و تابستان است که نتایج روندیابی و تفاضل دهه اول از دهه دوم نیز آن را تائید می کند. بیشترین کاهش در نیمه شمالی و غربی رخ داده است. در 30 سال دوم توالی سال­های خشک فراگیر و ایستگاه های درگیر با خشکسالی بیشتر شده است. بنابر این تغییر اقلیم را برای سواحل کاسپین و نیمه غربی تائید می کند.

مینا میریان، مصطفی کرمپور، محمد مرادی، هوشنگ قائمی، بهروز نصیری،
دوره 23، شماره 68 - ( 1-1402 )
چکیده

پژوهش حاضر با هدف آگاهی از تغییرات بلندمدت داده­های بارشی و همچنین شناسایی دوره­های مرطوب و خشک 35 ایستگاه همدیدی در ایران انجام شده است. جهت شناخت تغییرات بارشی ایستگاه­های مورد مطالعه، نقشه­های میانگین، شاخص ضریب تغییرات و چولگی ترسیم گردید. سپس با استفاده از آزمون آماری من – کندال معناداری روند بر روی هر کدام از ایستگاه­ها در سطح اطمینان 95 درصد مورد آزمون قرار گرفت. در نهایت با استفاده از بارش­های حدی 20 درصد بالا و پایین در طول دوره مطالعاتی 50 ساله، دوره­های مرطوب و خشک شناسایی شدند. نتایج نشان می­دهد که الگوی کلی رژیم بارشی کشور به صورتی است که مقادیر بارشی از نیمه شمالی به سوی نیمه­جنوبی و از غرب به شرق کشور کاهش می­یابد. کمترین مقادیر ضریب تغییرات و چولگی مربوط به نواحی شمالی به ویژه سواحل دریای کاسپین می­باشد و بیشترین مقادیر مربوط به نواحی جنوبی به خصوص مناطقی از جنوب و جنوب­­شرق می­شود. به طورکلی نتایج آزمون من-کندال نشان می­دهد که داده­های بارشی در مقیاس فصلی به استثنای چندین ایستگاه همدیدی روند معناداری را نشان نمی­دهند. بیشترین دوره­های مرطوب در فصل بهار و کمترین در فصل تابستان و بیشترین دوره­های خشک در فصل پاییز و کمترین در فصل بهار رخ داده­اند. تعداد خشکسالی­ها در دوره­های سرد قابل توجه می­باشد. همچنین فراوانی وقوع دوره­های خشک بیشتر از دوره­های مرطوب می­باشد.

الهه قاسمی کرکانی، ابراهیم فتاحی، تهمینه صالحی پاک، هوشنگ قائمی،
دوره 23، شماره 69 - ( 4-1402 )
چکیده

شدت بارش در طول مدت بارش تغییر می­کند. تغییرات مقدار بارش در طول یک واقعه در نحوه شکلگیری سیلاب و شدت و تداوم آن تأثیر گذار میباشد. شناخت و تعیین تغییرات زمانی بارش در طول مدت رگبار براساس الگوی توزیع زمانی مشخص میشود. در روند تبدیل حداکثر بارش محتمل به حداکثر سیل محتمل که با استفاده از مدل­های بارش – رواناب انجام می‌گیرد، تعیین الگوی تیپ توزیع زمانی بارش در ایستگاه­ها و منطقه تحت مطالعه ضروری است. بدین منظور می‌توان از داده‌های با مقیاس زمانی کوتاه مدت ایستگاه‌های باران نگار استفاده کرد. بهره گیری از شبیه سازی مدلهای میان مقیاس عددی وضع هوا مانند مدل تحقیقات آب و هوا و پیش بینی WRF)) توانسته است تا حدود زیادی این  نیاز را جبران کند. مدل WRF یکی از مدل های پاسخگو در زمینه پیش بینی بارش، دما و عناصر جوی است که در این مطالعه از آن بهره گرفته شده است. در این مقاله ابتدا مدل برای سه توفان شدید و فراگیر 14 و 15 آذر 1382 ، 3 تا 5 دی 1385 و 6 و 7 فروردین 1386  بر روی حوضه آبریز سد پارسیان و نواحی اطراف آن شبیه سازی شد و سپس خروجی آن با مقادیر بارش ثبت شده توسط دیتالاگرها مورد مقایسه قرار گرفت.

 

صفحه 1 از 1     

کلیه حقوق این وب سایت متعلق به نشریه تحقیقات کاربردی علوم جغرافیایی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Applied researches in Geographical Sciences

Designed & Developed by : Yektaweb