Showing 9 results for Evapotranspiration
Dr. Mostafa Kabolizadeh, Dr. Sajad Zareie, Mr. Mohammad Foroughi Rad,
Volume 0, Issue 0 (3-1921)
Abstract
There are various indicators to monitor and management of agricultural water resources in arid and semi-arid countries including Iran, some of which can be extracted directly in situ, and some can be retrieved using remote sensing technology and satellite images. Aim of this study is to propose the most appropriate and efficient indicators of agricultural water resource management for achieving maximum production and maximum water efficiency using remote sensing technology, therefore, Crop Water Stress Index (CWSI) and Surface Energy Balance Algorithm (SEBAL) were used to estimate Evapotranspiration (ET). In the first step, ET rate was calculated using SEBAL algorithm for six Landsat 8 satellite images related to the wheat growth period. Then, zoning of this index was done in the range of zero to one, in four categories of very low, low, medium and high, which respectively indicate the lowest to the highest amount of ET. In next step, CWSI was calculated based on Idso equation, and its results show different changes both in cold season and in warm months. Comparison of ET and CWSI shows a significant relationship between these two indices in warm months, while in cold months, no significant relationship can be seen. These findings along with the established relationship between ET and CWSI can inform water management strategies in arid environments for sustainable crop production. |
|
Ali Ahmadabadi, Zahra Sedighifar,
Volume 18, Issue 51 (6-2018)
Abstract
Climate change is one of the most important challenges that has affected various parts of human life on Earth. In the present study, in order to investigate the climate change, three synoptic stations of Karaj, Mehrabad and Dashan Tepeh with the help of the statistical statistic downscaling model (SDSM) model were used to predict the statistical period of 2016-2045. Finally, the effects of climate change on the hydrologic conditions of the basin with the help of the model (SWAT) was simulated by the Soil and Water Assessment Tool. The amount of surface runoff and runoff at the study area is 10.59 mm in the studied observation period, but this rate was estimated to be 21.27 mm for the predicted period due to the increase of urbanization and changes in utilization. The results of the research, while highlighting the importance of the effects of climate change, are necessary for their application in applying proper management to adapt to climate change in the future policies of the basin management.
Shadieh Heydari Tasheh Kaboud, Younes Khoshkhoo,
Volume 19, Issue 53 (6-2019)
Abstract
The aim of this research is the study of the climate change impacts on the seasonal and annual reference evapotranspiration time scales in some selected stations located in the West of Iran. To this purpose, four stations including Sanandaj, Saghez, Khorramabad and Kermanshah synoptic stations with enough long-term data were selected and the climate change impact on the reference evapotranspiration of these stations under two RCP2.6 and RCP8.5 scenarios in three future time periods including 2011-2040, 2041-2070 and 2071-2100 in comparison with the 1970-1999 base period was studied. The FAO-Penman-Montieth method was applied to calculating reference evapotranspiration and the CanESM2 general circulation model and SDSM downscaling method were used to simulating future climate conditions under the climatic scenarios. The results showed that the mean reference evapotranspiration in the annual and autumn and winter time scales in comparison to the base period will significantly increase for all of the studied stations under all of the scenarios and periods at the 0.01 confidence level. For spring season, the only significant change of the future period mean reference evapotranspiration compared to the base period in the all of the studied area will be a significant increase at the 0.01 confidence level in the 2071-2100 period under the RCP8.5 scenario and for the summer season, this significant increasing rate will occur in the 2041-2070 and 2071-2100 periods under the RCP8.5 scenario. The overall results of this research showed that the highest increasing rate of the future periods in comparison with the base period for all of the seasonal and annual time periods and for all of the studied area will under RCP8.5 scenario and in the 2071-2100 time periods. by comparing the reference evapotranspiration change rates between the different seasonal and annual scales, the results showed that the increasing rate of the mean reference evapotranspiration at the West of Iran will be very remarkably in the autumn and winter seasons compared to the other time scales.
Msc. Graduated Student Najmeh Daneshvar-Marvast, Dr Somayeh Soltani-Gerdefaramarzi, Dr Samaneh Poormohammadi,
Volume 19, Issue 55 (12-2019)
Abstract
The phenomenon of evapotranspiration causes water and moisture losses from water, soil and vegetation levels. Due to the small amount of atmospheric precipitation and water resource constraints in Iran, it is important to calculate it through a suitable method. The present research attempts to evaluate the evapotranspiration reference crop (ETo) and present it in the form of zoning map as a basic tool for water management. In this study, the long-term average of seven meteorological stations and evaporation pan data were used to determine the appropriate ETo estimation method. Evapotranspiration of reference crop was calculated to 14 methods the based on climatic information in each station. Computational methods including combinational methods Penman-based, radiation-temperature method, temperature method and radiation method. The most appropriate computational method was selected based on the R2 and Nash -Sutcliffe statistics. The zoning of evapotranspiration of reference crop was carried out based on the geographic information of the meteorological stations and the GIS software. The results of the research indicate that the best method for this region as the cold and moderate climate are FAO radiation and Blaney-Criddle. Also, the zoning result shows that west of the catchment has less evapotranspiration rather than its east. Sunshine hours, maximum temperature and wind speed were the most effective factors for evapotranspiration in this area by sensitivity analysis.
Mehdi Asadi, Mokhtar Karami,
Volume 20, Issue 56 (3-2020)
Abstract
The purpose of this study is to determine the evapotranspiration in Fars province that in many studies such as hydrological balance of water, irrigation systems design and management, simulation of product volume and management of water resources is very important. To do this, first, required data such as daily temperature, humidity, precipitation, wind speed, solar radiation pressures, solar radiation, etc. was collected. We used 12 stations with the same statistical interval, for the period 1995-2015. In order to estimate the evapotranspiration of the reference plant in different growth stages, Torent White, Penman-Monteith and Hargreaves-Samani methods were used. Results showed that with decreasing latitude, the evapotranspiration rate increased, and the highest rate of evapotranspiration occurs in the south, southeast and the center of the study area. The correlation coefficient R2 between height and White Penman, Monteith and Hargreaves Samani, are 0.9135, 0.53223 and 0.5286 respectively.
Dr Yagob Dinpashoh, Miss Masoumeh Foroughi,
Volume 20, Issue 58 (9-2020)
Abstract
Reference evapotranspiration (ET0) is a climatic parameter and can be computed from weather data. It is one of the most important hydrological parameters for calculating crop water demand, scheduling irrigation systems, preparing input data to hydrological water-balance models, regional water resources assessment, and planning and management for a region and/or a basin. The climatic data from synoptic stations with more than 20 years continues record in West Azarbaijan province was used. The well-known FAO-PM56 method was used to calculate the ET0. Then Multiple linear Regression (MLR) was used to estimate the ET0. The RMSE, MEA, NSH, and R2 were used to evaluate the performance of the MLR model. Then, the correlation coefficient (r) between ET0 and each of the meteorological parameters was obtained. And finally, with using Path analysis method, the influence of direct (P) and indirect effects of the meteorological parameters on ET0 was calculated. In the studied synoptic stations, NSH between 0.91 and 0.99, R2 between 0.91 and 0.99, RMSE between 0.05 and 0.15, and MEA between 0.04 and 0.12 were obtained. Also, it was found that the wind speed at all of stations had a significant correlation (at the 0.01% level) with ET0. The path analysis results showed that the maximum value of P (direct effect of meteorological parameters on ET0) in all of the stations belongs to wind speed. The P value of wind speed in Urmia equal to 0.85, Piranshahr equal to 0.99, Takab equal to 0.97, Khoy equal to 0.90, Sardasht equal to 1.06, and Mahabad equal to 0.78 are obtained.
Associated Professor Hooshmand Ataei, Mrs Mahsa Ravarian, Mr Seyed Alireza Tashakori Hashemi,
Volume 23, Issue 69 (6-2023)
Abstract
So far, several models have been proposed for estimating different climate parameters, but due to the lack of valid and long-term data in some meteorological stations, some models have been difficult to use. The SIMETAV V.1.0 model has been developed in cooperation with the University of California Davis and the Water Resources Authority of California in 2005. The SIMETAW model is a new and innovative tool for the estimation of applied water evapotranspiration (ETAW). SIMETAW simulation model is presented to estimate potential evapotranspiration and also estimate the net amount of water required for irrigation (ETaw). In addition, using this model, you can simulate daily meteorological data from meteorological data. The simulation of daily weather information where there are only monthly averages is a great tool for filling out lost data. In this research, Simetaw simulation model predicts different climate parameters such as solar radiation, minimum and maximum temperature, wind speed, dew point, precipitation and evapotranspiration potential in four different semi-arid climate zones (Mashhad). Dry (Bandar Abbas), moderate and humid (Ramsar) and Mediterranean (Sanandaj) during the years (1967-2017). The results of these studies showed that SIMETAW model has high ability to simulate climate variables and has the highest model accuracy in precipitation simulation (R2 = 0.998) and maximum temperature (R2 = 0.997) for semi-arid climate (Mashhad) , Dew point (R2 = 0.998) for temperate and humid climate (Ramsar), for radiation (R2 = 0.998) and wind speed (R2 = 0.9) for Mediterranean climate (Sanandaj) and minimum temperature (R2 = 0.998) for warm and dry climates (Bandar Abbas).
According to the sensitivity analysis of SIMETAW model, the input parameters of the model are respectively their effect on potential evapotranspiration from maximum temperature, precipitation, dew point temperature and minimum temperature, solar radiation and wind speed.
- Minoo Ahmadyan, - Bahroz Sobhani, - Sobhani@uma.ac.ir Jahanbakhsh Asl,
Volume 23, Issue 70 (9-2023)
Abstract
The evapotranspiration of the reference Crop is of particular importance due to the changes in climate parameters of temperature, sunlight, humidity and wind speed in combination. the purpose of this study is to investigate the effects of climate change on evapotranspiration of apple during the growing season.For this purpose, the ECMWF database has been used for observation data of Semirom and Urmia stations during 20-year period (1996-2001).To check this quantity in the next 20 years, the daily Downscaling dynamic data of the CORDEX project with a precision of 44% * 44% for the output of the ICHEC-EC-EARTH model under the two lines of 4.5 and 8.5 (RCP) was used for the period (2017-2037). In order to reduce the errors in the model estimates, the post-processing action of the estimated events was fulfilled. Then, minimum temperature data, maximum temperature, relative humidity, wind speed and radiation, potential evapotranspiration have been calculated using Penman- Monteith FAO method, which is more accurate than other models, and using the non-parametric Man-Kendall test and the Sen’s Slope estimator nonparametric Method in the confidence range, 95% evapotranspiration was determined. The results showed that evapotranspiration in both stations is increasing during the growing season. The ETo increase in the growth season of the apple tree stations was predicted from the base period for the trajectory of 4.5 and 8.5 for the Semirom 4.14.7 and 7.99.7, respectively, and for Orumiye Station, 26.5 and 11.8, respectively
Mrs Mahnaz Saber, Dr Bromand Salahi, Dr Abbas Mofidi,
Volume 24, Issue 74 (9-2024)
Abstract
In this study, the spatiotemporal variations of evapotranspiration (ET) were investigated in the southern part of the Aras River catchment. For this purpose, the ET networked data of FLDAS Noah model with horizontal resolution of 0.1 * 0.1 degree were used for a period of 38 years (2019-1982). After validating the data, the average annual ET values for the region were determined first. Then the monthly and seasonal distribution of the parameter were analyzed spatially. Subsequently, ET variations and anomalies were evaluated year to year. Also, the spatial distribution of the occurrence frequency of ET was investigated by considering the absolute thresholds of 50, 80, 100 and 120 mm for the Aras basin. The results show that the annual ET in the east of the basin is higher than the west of the basin. In the seasonal scale, spring and summer have the highest ET values, respectively. In the monthly scale, Mayو June, April and March had the highest ET values, respectively. In contrast, the autumn and winter months have the lowest average ET values. Also, the whole basin during the study period has experienced three distinct periods of ET changes that in the eastern and western parts of the basin, despite the same behavior in the second and third periods, a significant difference was observed in the first period. The results also indicate the existence of positive anomalies after 2002 in the whole basin, the highest values occurred in 2018 in the west of the basin. The study of the frequency of occurrence of absolute ET thresholds on the basin shows the high frequency of ET occurrence at all thresholds in the east of the basin. A study of nearly 4 decades of ET values in the Aras River Basin shows an increase in ET values over the last two decades over the entire basin, which can be attributed to the occurrence of global warming.