Search published articles


Showing 4 results for Forecasting

Dr. Mostafa Karimi, Mis Fatemeh Sotoudeh, Dr. Somayeh Rafati,
Volume 18, Issue 48 (3-2018)
Abstract

Increasing CO2 emissions and consequently, air temperature causes climate anomalies which affects all the aspects of human life. The purpose of this study was to assess the temperature changes and also to predict the extreme temperatures in Gilan and Mazandaran Provinces. To do this, the SDSM statistical and dynamical model was used. As well, it was applied the Mann-Kendal graphical and statistical technique to analyze the temperature changes and its trend. In this regard, the daily temperature was obtained from Rasht, Ramsar and Babolsar synoptic stations during 1961 – 2010, and also the general circulation models data of HadCM3 and NCEP were collected from related databases. The results revealed a significant positive trend in monthly and annual minimum and maximum temperature in all three stations in the first (1961-2010) and third (1961-2040) periods.  There is not a significant trend in extreme temperatures in Ramsar and maximum temperature in Rasht in the second period (2011-2040). The Mann-Kendal graphical test was used for the yearly extreme temperatures in all periods. The results showed that it was occurred both increasing trend and suddenly changes or shifts at the 95% confidence level in all stations. It is occurred the highest of changes in monthly and annual of the minimum temperature at forecasted period (2011-2040). It was predicted extreme temperature to increase about 0.1 to 1.7° C. The short time oscillations and significant positive trend occurred in both the maximum and minimum temperature shows the temperature increase and climate changes in the future. Thus it is obvious the decrease in temperature difference in warm and cold seasons.

 


Sayyed Mohamad Hosseini, Abdolhossein Adelzadeh,
Volume 19, Issue 52 (3-2019)
Abstract

In this research, applied synoptic model for determining the average daily temperature and its relationship with the Geopotential Height in middle level (500 HPa). Therefore, two database were used: database of atmospheric circulations, includes the data of geopotential height at 500 HPa and its data were extracted from the NCEP/DOE(US National Oceanic and Atmospheric Administration) in hours 00:00; 03:00; 06:00; 09:00; 12:00; 15:00; 18:00; and 21:00 in Zulu and other, database of environmental (surface) events. Contain of average daily temperature in the Mashhad, Torbat-Heydarieh and Sabzevar stations in Khorasan Razavi Province. The maximum and minimum of these stations in the time interval from 01/01/1987 to 01/01/2014 equal as 9862 days from the meteorological organization of Iran. Then, was calculated the correlation of the average daily temperature of selected stations with high atmospheric data (500 HPa level) with the northern hemisphere in Surfer Software. The result shown, four regions in the northern hemisphere which had high correlations with selected stations. The correlation results suggest that the United States has 25 pixels, Northern China 25 pixels, Africa 45 pixels and Japan with 65 pixels. Then, weighted average of pixels in heights by multiple regression equation station. The results of diagnostic models indicate that, per geopotential height increase in the profile, the average daily temperatures of selected stations in the Sabzevar 1.4, Torbat-Heydarieh 1.3 and Mashhad 1.3 degrees Celsius will increase.
 


Rahman Zandi, Najmeh Shafiei, Ebrahim Akbari, Ali Hajizadeh Shikhanlo,
Volume 23, Issue 71 (12-2023)
Abstract

Natural parameters are one of the main determinants of the physical development of cities and settlements. In a mountainous area, the effects of these factors have become a barrier to development and can have natural hazards. In this research, it is tried to identify the optimal directions of physical development of the city of Nurabad as a relatively high region by identifying its effective factors and evaluating it. To achieve this, seven effective indicators (elevation, gradient, gradient direction, lithology, distance from the fault, distance from the waterway) were used and to assess, model, and predict areas suitable for physical development of the city from Landsat satellite imagery and Models of FUZZY-AHP and Makov and Markov's predictions have been used. So that each of the layers is fuzzy according to the fuzzy membership functions in GIS Arc 10.3 software. An analytical comparison on the appropriate areas of the city based on the critical points with the appropriate zones. Finally, the final map with the two models was classified into five classes. The results of the research showed that up to 1404 horizons of the city were developed eastwards in Although this pathway is not a suitable route, due to the existence of the main Kazeroun fault and the main waterway, the most important risk factors in the city are considered to be the best place for the development of the city of the western and southwestern regions of the region, which is 13% of the area of ​​the basin Includes.
Zeinab Mokhayeri, Ebrahim Fatahi, Reza Borna,
Volume 25, Issue 76 (3-2025)
Abstract

To conduct this research, first, the data of monthly observations of synoptic and hydrometric precipitation from the National Meteorological Organization and the Ministry of Energy during the 30-year period (2006-2005) were obtained. To examine the prospect of future rainfall changes, the historical data of the period (1976-2005) and the simulated climate data of the period (2050-2021) using two models of CM3), (CSIRO-Mk3.6 from the series) Models (CMIP5) and according to 4 scenarios RCP2.6, RCP4.5, RCP6 and RCP8.5) that are available with a spatial resolution of 0.5 x 0.5 with the BCSD method have been used.Mean-based (MB) strategy has been used to correct the bias in the output of these models. The results of the AOGCM models showed that the CSIRO-Mk3.6 error coefficient was less than the GFDL-CM3 model for simulating precipitation in the case of Large Karun.The average future rainfall (2021-2050) in the whole basin compared to the average observed rainfall during the statistical period of 1976-2005 shows, in both models and scenarios in both basins in terms of amount and area of ​​precipitation is decreasing significantly.Heavy rains in the Greater Karun Basin have been concentrated in all scenarios and models east of the basin. The highest rainfall was in the central foothills. The lowest rainfall is in the southwest and southeast. The final results of the present study are expected to be 83-116 mm. Both models are expected to have the highest rainfall in the Greater Karun Basin, with two scenarios: rcp4.5 and rcp2.6.

 

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Applied researches in Geographical Sciences

Designed & Developed by : Yektaweb