Bhroz Sobhani, Fatemeh Nasiri,
Volume 22, Issue 65 (6-2022)
Abstract
Recognition and determination of ecological susceptible regions for proper bedding is importance and vital affair for regional planning and specially agriculture part. Climate and topography are main environmental components which altitude and cultivation product generation capability are depend their in every region. So , studying of effective climate factors and elements on agriculture have special importance. In current study , in order to agriculture ecological homogeneous geographical regions determination ; satellite images of Geographical Information Bases (GIS) were used which they are provider of new horizon and dimensions for effective discovering and fields resources management and we try to show Rapeseed cultivation ecological zoning usage development by combining modern tools , instruments and methods at Ardebil plain region. In order to recognition of mentioned susceptible regions in studied case climate data statistics were used that they include ; temperature degree , precipitation, relative humidity and environmental capability data such as ; inclination, height and multi-criteria decision making based on Analysis of Networks Process(ANP). Then layers were prepared by weighting and according to criteria and they were combined and also layers overlapping were done on GIS environment and ultimate layer of fields proportion was prepared for Rapeseed cultivation. Based on results analysis , studied region fields for Rapeseed cultivation include 33/38% without limitation ; 02/10% of fields with low limitation; 96/33% with medium limitation ; 71/17% of fields with high limitation
Fariba Sfandyary Darabad, Mansour Kheirizade, Masoud Rahimi,
Volume 22, Issue 66 (9-2022)
Abstract
Floods are one of the most abundant and destructive natural disasters that every year are caused heavy losses of life and property. Due to human activity in river systems and construction in rivers, flood damage has an upward trend. One of the most important actions to reduce flood damage is the provision of flood hazard zoning maps and their use in spatial planning. In this study, the risk of flood in the Nirchay River Basin that located Ardebil province was investigated. For this purpose, the HEC-HMS model was used to simulate rainfall-runoff and to identify flood zones and fuzzy logic in order to overlay the layers and prepare a flood hazard zoning map.The simulation results show the high performance of the HEC-HMS model in simulating rainfall-runoff of the Nirchay River Basin and estimating peak flood discharges. Rainfall conversion to runoff at the Nirchay River Basin controlled by slope and land-use.The most runoff height and peak flow in Nirchay River Basin are located in the upstream sub-basins. This is due to the steep, low permeability soil, frequency impervious surfaces and high CN. The combination of layers using fuzzy logic has shown that about 8.6% of the surface of the basin are located with a high risk of flooding. These zones are located mainly on the floodplain of the Nirchay Basin. Due to the Low valley width and low slope, these lands are always at flood risk. Most settlements in the study area are located at downstream of the basin. This has increased the risk of flooding.