Search published articles


Showing 2 results for Ndvi Index

Adel Nabi Zadeh Balkhanloo, Zahra Hejazizadeh, Parviz Zeaiean Firoozabadi,
Volume 18, Issue 50 (3-2018)
Abstract

Continuous decline in Lake Urmia water levels In recent years, the decline of rainfall and river flows and constant droughts has become the main concern of the people and the people. To study climate change and increase of temperature in the catchment area of ​​Lake Urmia, two factors for measuring the temperature and properties of satellite images were used which indicate the importance of land surface temperature changes (LST) and normalized vegetation differences (NDVI). This study was carried out using the satellite data of the periodic watershed (2008-2008) to investigate the spatial relationship between NDVI-Ts and NDVI-ΔT to investigate the actual agricultural drought occurrence. The goal is to extract the VTCI (vegetation temperature index) index, which is capable of identifying drought stress at regional scale. The results showed that the slope is negative for the warm edge, where it is positive for the cold edge. The gradient gradient shows that the maximum temperature is reduced when the NDVI value increases for any interval. The slope on the cold edge indicates that the minimum temperature rises when the NDVI value rises. Overall, at the warm and cold edges, it has been observed that the drought trend over 2009-2008 is higher than in 2010. In the days of Julius Day 257, the slope of the cold edge from 2008 to 2010 is decreasing. But at the hot edge, intercept pixels for 2008 is more than 323 degrees Kelvin, where in 2009-2010 it is less than 323 degrees Kelvin. In general, the correlation coefficient (R2) is different in the TS-NDVI spacing between (0.90-0.99). The present study showed that with the integration of satellite satellite data with meteorological data, the VTCI threshold for drought stress varies from year to year depending on the data conditions.

Abdolmajid Ahmadi, Ebrahim Akbari, Javad Jamalabadi, Maryam Alemohammad,
Volume 22, Issue 64 (3-2022)
Abstract

Awareness of the status of vegetation, land use change and surface temperature in each region, and the timing and location of their changes over time are important for micro and macro planning. In order to make optimal use of land, knowledge of land use changes is necessary, which is usually possible by detecting and predicting land use changes. Measuring the role of researches and researchers has been instrumental in the study of natural resources, especially vegetation, surface temperature and user variations in each location, as well as the availability of information for different times for valuable studies. In this study, ETM and OLI were used to study the process of land use change, vegetation cover, surface temperature, and hazards caused by them in perennial seasons. The results show that the area of use changes over the period 2000-2010 has decreased the area of use of the developed area, agricultural and growing gardens and the area of land and rangelands. Artificial vegetation has risen in aggregate and rangeland lands are showing a decreasing trend. Due to the importance of vegetation and its role in reducing the temperature of the earth's surface, the trend has been decreasing in regions with intensive vegetation and high temperature. Also, in the period from 2010 to 2017, the range was further increased and the city's growth continued sporadically, causing environmental changes and rising temperatures in the city. The change in the city's increased range has increased environmental risks, including the loss of good agricultural land and the increase in the temperature of the city. Due to the fact that most agricultural land is located in the vicinity of the city under cultivation of saffron, which in the warm seasons does not have surface coatings, changes in the type of cultivation can also affect the temperature of the earth.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Applied researches in Geographical Sciences

Designed & Developed by : Yektaweb