Mr Soleiman Pirouzzadeh, Mahmood Khosravi, Samad Fotohi,
Volume 19, Issue 52 (3-2019)
Abstract
Studies show that 14 provinces are impacted by wind erosion and the movement of sand dunes. The sand originated from the shores of Oman Sea is the most important environmental hazards that threaten the already large number of rural settlements. Sands of marine origin are available on the beach and away from the sea of dunes in addition of marine origin, Predictive models for planning sustainable use of land use and land cover in a country like Iran that land use is changing rapidly, there is an urgent need; To detect and predict changes in land cover changes overview to better manage natural resources and protect marginal lands beaches and is very effective long-term policy measures. The aim of this paper is modeling and prediction of changes in land-use in 2035 by using CA Markov model and Landsat satellite images in the West of Zarabad,( The coasts of Makran). Then to determine the changes in the movement of sand dunes in the study area ranged from twenty-three years (1991-2014), satellite imageries from Landsat 7 and 8(ETM+ sensor) with 15 and 30 meters spatial resolution , was used. The 1991, 2001and 2014 month August images were used, this images from website of the US Geological Survey (USGS) have been prepared. Finally, these images by using Geographic Information System (GIS), ENVI and IDRISI softwares were analyzed. The results showed that the changes in the region the largest increase in the interest of sand dunes in the year 1991 (25.561) km², in 2001 (10 . 568) km², and in 2014 (45.578), and the increase of (17.198) km², has experienced. The results also estimated that in future (2035) sand dunes area increase to 592.45 km².This increase in area of sand dunes occur in the absence of proper and efficient management is done in order to stabilize the sand. This increase resulted from changed moorland 162 km²of land area (27%) and 12 kilometers of vegetation (2%) and 23 km² of fluvial (3.4%). These changes makes heavily exposed about 6 villages (Karti,Gnjk, Sohroki, Pyvshk, Vanak and Kalirak) to the movement of running sands.
Ali Bahri, Younes Khosravi,
Volume 20, Issue 58 (9-2020)
Abstract
Considering the vast application of sea surface temperature in climatic and oceanic investigations, this parameter was studied in Oman Sea from 1986 to 2015. The SST was surveyed using trend analysis and Global and local Moran’s I spatial autocorrelation. In trend analysis, the Mann-Kendall test was used to determine the trend of SST changes and the Sen's Estimator method was used to examine the slope of the changes. Using these methods, it was found that during January, February and December, there was no significant ascending trend in SST values, and only parts of the Strait of Hormuz had a significance descending trend. On the other hand, there was no significant descending trend in March, and the ascending trend in the SST was seen in the southern part of the Oman Sea. Other months of the year had a significant ascending and descending trend in different parts of the Oman Sea, which October had the highest ascending trend. In the annual time scale, it was also found that the southern parts of the Oman Sea had ascending trend in the SST value and Western parts had a descending trend. The occurred changes in the high amounts (positive and negative) were corresponding to the significance ascending and descending trends. The results of Global Moran for the annual time scale indicated an ascending trend of autocorrelation values and cluster patterns of SST data over time, using the local Moran analysis, it was found that warm clusters of SST are increasing in the Oman Sea, and on the other hand, cold clusters of this parameter have been reduced over 30 years. According to the results of trend and spatial autocorrelation analysis, it has been found that SST have been increasing in different parts of the Oman Sea during 30 years, so climate change and global warming may have affected this region.