Taher Safarrad, Mehran Mansourinia, Hersh Entezami,
Volume 19, Issue 53 (6-2019)
Abstract
Population growth and urbanization development are the main triggering factors of changes in urban land uses. These, in turn, result in changes in the components of radiation balance. The present study tries to analyze the role of urban land uses in radiation balance by calculating net radiation and its analysis. For this purpose, the Landsat 8 satellite image of 2016 was used. Characteristics of radiation flux including net radiation flux (RN), ground surface albedo (α), incoming longwave radiation (RL↓), incoming shortwave radiation (RS↓), outgoing longwave radiation (RL↑), and ground surface temperature were computed using Sebal algorithm.The values of these components in different land uses (compressed residential, scattered residential, green area and wastelands) were analyzed using one-way analysis of variance (ANOVA) and Tukey’s test. The results of this study showed that the selected land uses have significant differences in the amount of radiation flux, therefore the wastelands are warmer than the residential areas by about 6 oC and the residential areas are warmer than the green areas by about 1.5 oC. The results also indicated that these differences are due to changes in output energy (α and RL↑), and any change in land use over time will ultimately lead to a change in the radiation balance and the temperature of those places, which this temperature increase, is different from the increase of the temperature due to global warming.
Faryad Shayesteh, Mohammad Saligheh, Bohloul Alijani, Amanollah Fathnia,
Volume 23, Issue 70 (9-2023)
Abstract
The smallest change in energy exchange of Earth System Shifts the balance of life. In order to be aware of the solar radiation Balance, Recognition of the measure of Balance level of the input and output components of radiation of input Short wavelength to the surface of the earth and Long Output Wavelength, it is necessary from the earth. To study the energy balance of input and output in Iranian plateau, the input and output radiation data of NCEP / NCAR site was used With a resolution of 2.5 * 2.5 *, including 46 cells in Iran,. For each season, a representative month was considered And correlation, confidence level, coefficient of determination and amount of oscillation of input and output radiation were calculated in different regions of Iran. Finally, some calculations were presented spatially with the IDW method. The results showed that the maximum short-wave wavelength was 230 watts per square meter in August and the lowest was 52 watts per square meter in November. The highest long-wavelength output in August was 65 watts per square meter, and the lowest amount was January and November with 20 watts per square meter. The highest the amount of output increase has been occurred in August in the east of province South Khorasan with a correlation of 0.59 to 112 watts per square meter in 2001. In decreasing output changes, except for May, there was a decrease in the rest of the months. The highest long-wavelength output was in the northwest and in the provinces of Ardabil and Guilan.