Fathi S, Khorshiddoust A M. Zoning and spatial analysis of potential hazards (A case study of Silvana district). Journal of Spatial Analysis Environmental Hazards 2021; 8 (1) :1-20
URL:
http://jsaeh.khu.ac.ir/article-1-2908-en.html
1- University of Tabriz , saeedfathi1371@yahoo.com
2- University of Tabriz
Abstract: (5487 Views)
Zoning and Spatial Analysis of Potential Environmental Hazards
Case study: Silvana District
Abstract
Natural hazards can be considered as one of the most important threats to humankind and nature that can occur anywhere in the world. Natural hazards are one of the main obstacles to sustainable development in different countries and one of the important indicators of the development of world countries is their readiness to deal with natural hazards. Therefore, it is important to pay attention to it and appropriate measures should be taken to reduce the vulnerability of human settlements. Nowadays with increasing population growth, population dynamics and the large number of people exposed to various types of disasters, the need to identify environmental potential hazards and identification of hazardous areas are felt more and more. Meantime, some people may not be aware of potential hazards of their place of residence. So by identifying and evaluating potential hazards and their Risks before the occurrence, we can significantly reduce the severity of the damages and contribute to sustainable regional development. The negative effects of natural disasters can be minimized by the availability of comprehensive and useful information from different areas and Multihazard mapping is one of the most effective tools in this regard.
According to the above mentioned, in this study, the spatial analysis of potential hazards in Silvana district in Urmia County has been studied. This study area due to specific geographic conditions such as position, complexity of topographic and ecological structures, in general, the existence of environmental factors for hazards has been selected as the study area. There have been a number of hazards in the past and assessing of this area is necessary, because of the lack of previous studies. For this purpose, by reviewing various reports and doing field observations, three hazards including Flood, Landslide, and Earthquake are identified as potential hazards of the study area.
For assessing hazards, 12 factors in 6 clusters such as Slope, Aspect (Topographic factors), Lithology, Soil type, Distance to Faults (Geological factors) Precipitation (Climatological factors), River Network Density, Groundwater Resources (Hydrological factors), Land use, Distance to Roads (Human factors), Observed Landslide Density and Seismicity (Historical factors) as the research factors has been selected. For weighting factors, Analytic Network Process (ANP) Method in Super Decisions 2.6.0 software environment has been used. The results of the analysis show that Slope (0.201), Precipitation (0.161), Lithology (0.112), Distance to Faults (0.106), Land use (0.096), Rivers (0.078), Seismicity (0.06), Soil Type (0.055), Landslide Density (0.047), Aspect (0.033), Groundwater (0.03) and Distance to Roads (0.016), Respectively have maximum to minimum relative weight. Then, weighted maps are standardized with using FUZZY functions. For this purpose, Fuzzy membership functions such as Linear, Large and Small has been selected based on each factor. For some factors such as Slope, Aspect, Lithology, Soil type, Rivers density, Land use, Seismicity and Landslide density, Fuzzy linear function has been used. For some others such as Groundwater and Precipitation, Fuzzy large function has been used and for distance to Faults and distance to Roads, Fuzzy small function has been used. Finally, weighted maps were overlay in ArcGIS 10.4.1 environment with Fuzzy Gamma 0.9 operator and potential hazards zoning maps is obtained.
Final results indicate that major parts in the Northwest, West and South of the study area located in high risk zones and 59 percent of the total area exposed to high risk. Based on hazard zoning maps, 44 percent of the area exposed to Flooding, 48 percent exposed to Landslide and 44 percent exposed to Earthquake. Also, 61 percent of the population or 37394 people exposed to one hazard, 7 percent or 3817 people exposed to two hazard and 8 percent or 4914 people exposed to three hazard. According to surveys, only 21 percent of the study area is considered as a low risk area but that does not mean that environmental hazards will never happen in these areas. In general, and based on results, it is concluded that Silvana district has a high potential for environmental hazards. Final results of the research show that potential hazards identifying and preparation of hazard zoning maps can be very useful in reducing damages and achieving sustainable regional development. Therefore, considering the ability of hazard zoning maps to identify areas exposed to risk and assess the type of potential hazards, These analyzes should be considered as one of the most appropriate and useful tools in different stages of crisis management that can be the solution to many problems in preventing and responding to natural disasters and therefore, it is recommended that they be used in the crisis management process.
Keywords: Spatial Analysis, Environmental Hazards, Silvana, ANP Method, Risk
Type of Study:
Research |
Subject:
Special Received: 2019/02/20 | Accepted: 2019/10/26 | Published: 2021/06/19