XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

riahi S, safari A, hisseini S M, ahmadabadi A. Estimation of the flood depthyears in the Qom-Roud River by combining the hydraulic characteristics of the river and the geomorphic characteristics of the catchment area.. Journal of Spatial Analysis Environmental Hazards 2024; 11 (2) : 3
URL: http://jsaeh.khu.ac.ir/article-1-3343-en.html
1- kharazmi university
2- kharazmi university , amirsafari@yahoo.com
3- Tehran university
Abstract:   (3163 Views)
In order to plan, manage and exploit water and land resources, awareness of the spatial variability of resources, as well as understanding the response behavior of the watershed in order to model physical processes, has an identical significant role. Due to its location in arid and semi-arid areas, special climatic and geomorphological conditions, Qom-Roud basin is prone to flash floods. Due to the lack of hydrometric and topographical data with high accuracy in the basin, the use of hydraulic models does not lead to accurate results of the hydraulic characteristics of floods. In such a situation, the methods based on the geomorphological features of the basin can be advantageous. In this article, Variable flood stage method (VFS) method is used, which combines the hydraulic characteristics of the river with the geomorphic characteristics of the basin in order to estimate the water depth in the river caused by floods with different return periods. The water depth was investigated for different return periods of two, five, ten, twenty-five, fifty and hundred years. In each period, the highest water depth was in the parts near the outlet and the lowest water depth was in the upstream parts of the river. The research illustrations there is a direct relationship between the depth of water and the area of the sub-basin. The results of this research can be used for basins without hydrometric and topographic statistics with high accuracy in order to estimate the peak speed and flood depth.
 
Article number: 3
Full-Text [PDF 1980 kb]   (197 Downloads)    
Type of Study: Applicable | Subject: Special
Received: 2022/11/5 | Accepted: 2023/01/11 | Published: 2024/08/31

References
1. بزرگ حداد، امید؛ سارا خسروشاهی اصل، محبوبه زارعزاده، پوریا جوان. 1392. توسعه مدل شبیه‌سازی – بهینه‌سازی در حفاظت مناطق سیل‌گیر. نشریه آب و خاک (علوم و صنایع کشاورزی)، 27 (3) : 462-471.
2. جعفری، محمدرضا و شمس الله عسگری .1400. پهنه‌بندی آسیب‌پذیری عرصه‌های پخش سیلاب مطالعه موردی: ایستگاه پخش سیلاب موسیان استان ایلام) . نشریه تحلیل فضایی مخاطرات محیطی، 8( 2):151-164
3. روشان، حسین ؛ قربان وهاب زاده، کریم سلیمانی، رسول فرهادی .1392. شبیه سازی رفتار هیدرولیکی رودخانه با استفاده از مدل HEC-RAS در محیط GIS مطالعه موردی: رودخانه بشار، استان کهگیلویه و بویراحمد. پژوهشنامه مدیریت حوزه آبخیز، 4(7): 70-84.
4. شکیب،سید حامد؛ حمید شجاع رستگاری، علی اسماعیلی .1390. بررسی تغییرات عمق آب رودخانه شهری با استفاده از منطق فازی-عصبی. یازدهمین سمینار سراسری آبیاری و کاهش تبخیر، باهنر کرمان
5. ظهیری، جواد و آشناور، مهران.1398. مدل‌سازی دوبعدی هیدرولیک جریان در رودخانه کارون. علوم آب و خاک- ویژه‌نامه سیل و فرسایش خاک، ۲۳(4 ) : 331-344.
6. غلامی، معصومه؛ عزت الله قنواتی، علی احمدآبادی .1398-. شبیه سازی پهنه های سیل گیر در حوضه های آبریز کلان شهر تهران (حوضه کن). تحلیل فضایی مخاطرات محیطی، 6 (4): 95-108.
7. مدیریت منابع آب، داده های آماری
8. Amoateng, P.; C. M. Finlayson, J. Howard, and B. Wilson.2018. A multi-faceted analysis of annual flood incidences in Kumasi, Ghana. International Journal of Disaster Risk Reduction, 27: 105–117
9. Dodov,; B. ; and E. Foufoula-Georgiou. 2004. Generalized hydraulic geometry: derivation based on a multiscaling formalism. Water Resources Research, 40: 101-137. DOI:10.1029/2003wr002082
10. Munna,G.M.; M.J.B. Alam, M.M. Uddin, N. Islam, A.A. Orthee ,and Kh. Hasan.2021. Runoff prediction of Surma basin by curve number (CN) method using ARC-GIS and HEC-RAS. Environmental and Sustainability Indicators, 11: 1-7.
11. Hosseini, S.M.; N.Mahjouri ,and S.Riahi .2016. Development of a Direct Geomorphologic IUH Model for Daily Runoff Estimation in Ungauged Watersheds. Hydrology. Engineering, 21(6), 05016008.DOI: 10.1061/(ASCE) HE .1943-5584.0001333.
12. Li, j.; Y. Zhoa, L. Bates, J.Neal, S. Tooth, L. Hawker ,and C. Maffei .2020. Digital Elevation Models for topographic low-gradient, terminal dryland rivers: A comparison of spaceborne datasets for the Río Colorado, Bolivia. Journal of Hydrology, 591: 125617.
13. Leopold, LB.; and T.Jr, Maddock.1953. The hydraulic geometry of stream channels and some physiographic implications. Geological survey professional paper, 252: 145-157
14. Munna, G, M. ; M. J. B Alam, M. M. Uddin, N. Islam, A. A. Orthee, K. Hasan .2021. Runoff prediction of Surma basin by curve number (CN) method using ARC-GIS and HEC-RAS. Environmental and Sustainability Indicators, 11:100129
15. Munich, R. E. 2005. Topics Geo, annual review, natural catastrophes 2005. Knowledge series Munich, Germany: Topics Geo, (2006, [DOI:Yes).]
16. Nardi ,F.;E. Vivoni,S. Grimaldi. 2006. Investigating a floodplain scaling relation using a hydrogeomorphic delineation method. Water Resources Research ,42:9-28. DOI:10.1029/2005WR004155
17. Perera, E. D. P.; A. Hiroe, D.Shrestha, K. Fukami, D. B. Basnyat,S. Gautam. A.Hasegawa, T.Uenoyama, and S.Tanaka .2015. Community-based Flood Damage Assessment Approach for Lower West Rapti River basin in Nepal under the Impact of Climate Change. Natural Hazards, 75: 669-699.
18. Rathjens.H, K.; N.Oppelt, D. Bosch, J,G .Arnold, M.Volk. 2014. Development of a grid-based version of the SWAT landscape model. Hydrological Processes, 29: 900–914. DOI:10.1002/hyp.10197.
19. Rathjens.H, K.; Bieger, I. Chaubey, J. G. Arnold, P. M.Allen, R. Srinivasan, D. D. Bosch, and M. Volk .2016. D. D. Bosch and M. Volk .2016. Delineating floodplain and upland areas for hydrologic models: a comparison of methods. a comparison of methods. Hydrological processes, 30: 4367–4383.
20. Rodríguez-Iturbi.; I and JB. Valdés .1979. The geomorphologic structure of hydrologic response. Water Resources Research,15: 1409–1420. DOI:10.1029/wr015i006p01409.
21. Smith, K.; and DN. Petley .2009. Environmental hazard: assessing risk and reducing disaster. 5th edn. Routledge, London(book).
22. Thompson CM .; and T.G. Frazier .2014. Deterministic and probabilistic flood modeling for contemporary and future coastal and inland precipitation inundation. Appl Geogr, 50:1–14.
23. Borwarnginna,P.;H. Jason ,Hagab. W.Kusakunniran .2022. Predicting river water height using deep learning-based features .ICT Express, in press [DOI:10.1016/j.icte.2022.03.012.]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb