XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

feyzolahpour M. Estimating land surface temperature (LST) and comparing it with NDMI, NDWI and NDVI indices in order to investigate water stress with an emphasis on land use changes (LULC) in the support vector machine (SVM) system (study area: Anzali wetland). Journal of Spatial Analysis Environmental Hazards 2023; 10 (2) :131-148
URL: http://jsaeh.khu.ac.ir/article-1-3405-en.html
Assistant Professor of Geomorphology, Zanjan University, Zanjan, Iran , feyzolahpour@znu.ac.ir
Abstract:   (638 Views)
Earth's surface temperature is considered an important parameter in biosphere, ice globe and climate change studies. In this research, LST, NDVI, NDMI and NDWI values were calculated for the Anzali wetland area using the OLI and TIRS measurements of the Landsat 8 satellite. Investigations showed that the minimum LST temperature for the years 2013, 2018 and 2023 was equal to 13.94, 22.36 and 14.6, respectively, and its maximum values for these years were equal to 35.7, 40.58 and 31.6. 31.6 degrees Celsius is estimated respectively. Vegetation status, access to water resources and water stress for the study area were estimated with NDVI, NDWI and NDMI indices. Bands 3, 4, 5, 6 and 10 of Landsat 8 satellite were used to estimate these indicators. The obtained values were compared with LST values. The distribution charts show that the highest negative correlation between LST and NDMI is established at the rate of -0.65 and the highest positive correlation between the NDWI and LST indices is established at the rate of 0.23. In general, the investigations have shown that there is a negative correlation between the NDMI and NDVI indices with the LST index. The Support Vector Machine (SVM) method was also used to investigate land use changes (LULC). The results showed that in the studied area, which has an area of 686.81 square kilometers, agricultural lands have faced significant expansion and reached 487.7 square kilometers from 329 square kilometers in 2013. In the meantime, forest areas have faced a sharp decrease and have decreased from 34.8 square kilometers to 1.73 square kilometers.
Full-Text [PDF 1472 kb]   (196 Downloads)    
Type of Study: Research | Subject: Special
Received: 2023/12/2 | Accepted: 2023/09/1 | Published: 2023/09/1

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb