XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

babaee L, parchami N, mostafazadeh R. Estimation of temporal and spatial variations of flood and low flow indices extracted from the FDC in the Ardabil province rivers. Journal of Spatial Analysis Environmental Hazards 2023; 10 (1) :109-126
URL: http://jsaeh.khu.ac.ir/article-1-3050-en.html
1- , raoofmostafazadeh@uma.ac.ir
Abstract:   (3278 Views)
Changes in the hydrological response due to climatic parameters and human induced activities can be derived from indicators based on the analysis of flow duration curves. The purpose of this research is to determine the flood and the low flow parameters using the flow duration curves. The trend detection technique can be used as a useful tool in deterimining the temporal changes of the different hydro-meteorological parameters. The river gauge stations of the Ardabil province were used for the analysis of high and low flow occurrence in this study. The spatial variations of the flood events can be used as a preliminary guideline for the prioritization of the watershed in the vulnerability assessment and management-oriented measures. Also, the assessment of low flow condition is a useful tool in the allocation of environmental flow allocation and utilization of river surface water resources.
Methodology:
In this research, temporal and spatial changes of Q10, Q50, Q90, Q90/50 and Lane indices in 31 hydrometric stations of Ardabil province during the period from 1993- 2014 were evaluated. The flow duration curve of each river gauge stations was derived. The flow duration curves also were plotted based on the dimensionless flow divided by the mean discharge and the upstream area of each river gauge station. Also, the temporal variations of the of Q10, Q50, Q90, Q90/50 and Lane indices were analysed using non-parametric Man Kendall trend test. Then the significant level of upward and downward trend directions were determined. In this study, the results of 5 river gauge stations were presented as example based on the the river flow ranges, which includes low, medium and high river flow discharge (Hajahmadkandi, Nanakaran, Shamsabad, Polesoltani, and Booran).
 
Results:
Based on the results, the trend of Q10 (Flood flow index) was significant at the stations located on the main trunk of the Qarehsou river. Meanwhile the Q50 (average flow index) has a significant decreasing trend in most of the studied river gauge stations. In addition, Q90 and Q90/50 indices have a significant decreasing trend in most stations. In addition, Q90 and Q90/50 indices had a significant decrease at (p<0.05) regarding the Lane index as a flood related indicator in the Arbabkandi and Dostbeglo stations, which are affected by the dam construction there is a significant decreasing trend.
Conclusion:
I summary, the values of flood flow index in the upstream rivers of the Ardabil province had a increasing trend.
Full-Text [PDF 1048 kb]   (1104 Downloads)    
Type of Study: Research | Subject: Special
Received: 2021/10/31 | Accepted: 2022/11/9 | Published: 2023/10/7

References
1. اسلامیان، سید سعید؛ محسن قاسمی و سمیه سلطانی گرد فرامرزی. 1391. محاسبه و ناحیه بندی شاخص‌های جریان کم و تعیین دوره‌های خشکسالی هیدرولوژیک (مطالعه موردی: حوزه آبخیز کرخه). علوم و فنون کشاورزی و منابع طبیعی، علوم و خاک، (59)16: 14-1.
2. حجام، سهراب؛ یونس خوشخو و رضا شمس‌الدین وندی. 1387. تحلیل روند تغییرات بارندگی‌های فصلی و سالانه چند ایستگاه منتخب در حوزه مرکزی ایران با استفاده از روش‌های ناپارامتری. پژوهش‌های جغرافیایی، 64: 168-157.
3. سلیمانی، الهه. 1398. بررسی علل وقوع سیل‌های اخیر از دیدگاه زیست محیطی. معاونت پژوهش‌های زیربنایی و امور تولیدی مطالعات زیربنایی گروه محیط زیست.
4. قهاری، غلامرضا؛ امیر گندمکار، بهرام نجف پور و مسعود نجابت. 1394. بررسی روند تغییرات دمای ایستگاه همدید شیراز به روش آماری من‌کندال. جغرافیای طبیعی، (27 )8: 118-105.
5. کاظم‌زاده، مجید؛ آرش ملکیان و علی رسول‌زاده.‌1392. تحلیل روند جریان رودخانه‌ای با استفاده از رویکردهای آماری پارامتری و ناپارامتری در استان اردبیل. پژوهش‌های دانش زمین، (15‌)4 :63-51.
6. کاظمی، رحیم؛ رضا بیات.1396. بررسی اثرات تغییر کاربری اراضی بر شاخص‌های جریان کمی (‌مطالعه موردی: حوزه آبخیز طالقان). حفاظت آب و خاک، (1)24: 294-287.
7. کاظمی، رحیم؛ جهانگیر پرهمت و فرود شریفی. 1397. بررسی و تعیین عوامل موثر بر شکل منحنی تداوم جریان در اقلیم‌های مختلف ایران. حفاظت آب و خاک، (‌1)24: 105-85.
8. گودرزی، محمدرضا و علیرضا فرجی. 1396. ارزیابی روش‌های مختلف ریز‌مقیاس نمایی برای شاخص‌های جریان کمینه تحت اثرات تغییر اقلیم. اقلیم شناسی، (‌32 و31 )8: 72-57.
9. مصطفی‌زاده، رئوف و سونیا مهری. 1395. روند تغییرات ضریب سیلابی در ایستگاه‌های هیدرومتری استان اردبیل، مدیریت حوزه آبخیز، (17) :9 94-82.
10. مهری، سونیا؛ رئوف مصطفی‌زاده، اباذر اسمعلی عوری و اردوان قربانی. 1396. تغییرات زمانی و مکانی جریان پایه در رودخانه‌های ‌استان اردبیل. فیزیک زمین و فضا، (3 )43: 634-623.
11. Aich, V., B kone, F. F. Hattermann, and E. N. Muller. 2014. floods in the Niger basin-analysis and attribution. Natural Hazard and Earth System Sciences. 2: 5171-5212.
12. Issak, H.E., and, R.M. Srinivasta. 1989. applied geostatistics, oxford university Press: Oxford. 561p.
13. Jiang, T., B. Su, and H. Hartmann. 2007. temporal and spatial of precipitation and river flow in the Yangtze River Basin, 1961-2000. Geomorphology, 85: 143-154.
14. Johnston, K.m M. VerHoef, J., K. Krivoruchko, and L. Lucas. 2004. Arc GIS 9: Using Arc GIS Geostatistical Analyst. ESRI, 300p.
15. Karpouzos, D. K., S. Kavalieratou, and C, Babajimopoulos. 2010. Non parametric trend analysis of precipitation data in Pireia region (Greece), European water, 30: 31-40.
16. Lahha, G., G. Bloschl. 2007. A national low flow estimation procedure for Austria. Hydrological Sciences Journal, 52(4): 625-644.
17. Mijuskovic- Svetinovic, T., S. Maricic. 2008. Low flow analysis of the lower Drava river. Journal of Earth and Environmental Science, 4(1):1755- 1307.
18. Nka., B.N., L. Oudin, H. Karambiri, J. E. Paturel, and P. Ribstein. 2015. Trends in Floods in west Africa analysis based on 11 catchments in the region. Hydrology and Earth System Sciences, 19: 4707-4719.
19. Patel, J. A. 2007. Evaluation of low flow estimation techniques for unguauged catchment. Water and Environ Journal, 21: 41- 46.
20. Rood, S. B., G. M. Samuelson, J. K. Weber, and K. A. Wywort. 2005. Twentieth- century decline in Stream flow from the hydrographic apex of North America. Journal of Hydrology, 306 (1): 215-233.
21. Sarailidis, G., L. Vasilides, and A. Loukas. 2015. The quantification of threshold level method on lows studies, Proceedings of the 14th International Conference on Environmental Science and Technology Rhodes, Greece, 1-5.
22. Sarcy, J. C. 1959. Flow duration Curves. United States Geological Survey, Washington, D C, water supply paper 1542 A, U. S Geological survey, Reston, Virginia, 38 pp.
23. Smakhtin, V. U. 2001. Estimating continuous monthly base flow time series and their possible application in the context of the ecological reserve. Water S.A, 27(2): 213- 217.
24. Sun, Y., S. Kang., F. Li and, L. Zhang. 2009. Comparison of interpolation methods for depth to groundwater and its temporal and spatial variations in the Minqin oasis of Northwest China. Environmental Modeling & Software, 10: 1163-1170.
25. Vogel, R. M., C. N. Kroll. 1992. Regional geohydrologic- geomorphic relationship for the estimation of low flow statistics. Journal Water Resources Research, 28(9): 2451- 2458.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb