Search published articles


Showing 4 results for Ghader

Parisa Jaberi, Samaneh Sabetghadam, Sarmad Ghader,
Volume 7, Issue 3 (11-2020)
Abstract

Visibility is one of the most important optical characteristics of the atmosphere. Prediction of visibility is essential for air pollution, air traffic, flight safety, road traffic and shipping. Visibility reduction may be caused by different reasons. Fog is one of the most common reasons of visibility reduction, i.e. the droplets of water suspended in the atmosphere reduce the visibility to less than 1 km. Precipitation may also reduce visibility. Prediction of visibility in NWP models is usually accomplished by using the relationship between visibility and liquid water content, temperature, relative humidity. Purpose of the present work is to predict visibility during fog and precipitation over Tehran area in January 11th, 2014 and March 7th, 2013. Different algorithms including UPP1, AFWA, FSL and SW99 have been experimented to predict visibility.. Predicted visibility has been compared to observations, including Synoptic and METAR data in Imam Khomeini and Mehrabad airport.  The  WRF version 3.8.1 has been used to simulate precipitation and fog. In this simulation model configuration defined in Lambert uniform space. The model consist three nested domains. First domain was a 27-km grid model (83×65), surrounding a 9-km grid model (112×94) which was surrounding a 3-km grid model (112×97). Center of all domains was at longitude 51° and 44' and latitude 36° and 5' which is located almost at center of Tehran. All domains had 40 vertical layers and model top was located at 100hPa. The out puts of 3-km domain is used for visibility estimation. Initial and boundary conditions were set by using FNL data which is 1°×1° degree grid data. This data is available every 6 hours. Simulations were in 36 hours and first 12 hours was the spin up time. Results show that most of these algorithms can partly predict visibility reduction. The FSL algorithm works better than the other methods in fog situation and SW99 works better in snow situation. Comparing results shows that the visibility reduction during snow is more reliable than during fog. There were some errors in model predictions some of them were due to visibility algorithms, because the coefficients of these algorithms were driven in other parts of earth. The other errors were systematic errors of WRF. Predictions of temperature had warm bias and also there were positive bias in prediction of relative humidity.  
 

Valiollah Sheikhy, Hossein Malakooti, Sarmad Ghader,
Volume 7, Issue 4 (2-2021)
Abstract

Abstract
Increasing population growth and consequently the development of urban areas can profoundly affect climate events and thus intensify phenomena such as heat stress. Given the expected effects of this phenomenon on human health, it is very important to provide mitigating operational solutions to control future conditions. Therefore, the present study was conducted with the aim of simulating the effect of urban planning solutions on dynamic processes in the urban environment and at the local scale in Tehran city using the WRF mid-scale numerical model. Simulations were performed using 4 nested domains with a two-way interactive nesting procedure. The study used a simple Single-Layer Urban Canopy Model and a more advanced multi-layered approach called Multi‐layer urban canopy (BEP). The results of the simulations, after comparing the two urban schemes with a sensitivity measurement for different strategies, showed that the surface reflectance change scenario has the greatest impact on the land surface compared to the two scenarios of increasing urban green areas and reducing building density. Due to Tehran's specific topographic location and high overall temperature in this region, Tehran is relatively vulnerable to heat stress. Compared to the intensity of 5.5 °C for base mode, applying control measures can reduce the intensity of UHI up to 3 °C when using bright colors with high reflectivity for the ceiling and 1 ° C by replacing impermeable surfaces with natural vegetation in urban areas of Tehran.


Seyed Hedayat Sheikh Ghaderi, Toba Alizadeh, Parviz Ziaeian Firoozabadi, Rahman Sharifi,
Volume 10, Issue 1 (5-2023)
Abstract



Abstract
The aim of this study was to analyze the temporal and spatial nature of dust storms during the period 2016 to 2018 in Kermanshah Using the HYSPLIT routing model and the MCD19A2 product, the Modis sensor was performed in the Google Earth web engine.In order to route the origin of dust particles, the Lagrangian method of HYSPLIT model was used in 48 hours before the occurrence of dust phenomenon in Kermanshah at three altitude levels of 200, 1000 and 1500 meters.Findings from HYSPLIT model tracking maps indicate that the general route for dust transfer to the study area is the north-west-southeast route with the origin of the deserts of Iraq and Syria at three altitudes of 200, 1000 and 1500 meters. On June 17, 2016 and October 27, 2018, as well as the southwest-west route originating in Kuwait, Northern Saudi Arabia and part of Iraq on November 2, 2017.The results of the maps obtained from the MCD19A2 product of the Modis sensor, especially the maps of periodicity, cumulative concentration, spatial variation and the highest AOD map, show a high correlation with the routed maps extracted from the HYSPLIT model. In general, based on the findings of the maps extracted from the product MCD19A2, Modis sensor during the period 2016 to 2018 in Kermanshah, the central and eastern regions have always been more affected by dust storms than in other parts of the city. On average, they were more exposed to dust pollution than other parts of the city. In this regard, the final results show a high correlation between the actual PM10 data and the AOD values derived from the MODIS sensor.

Keyword: Dust, AOD, Modis, HYSPLIT, Kermanshah, Google Earth Engine
 
Farzin Mahmoudi, Hamed Ghadermazi, Dr Leila Mafakheri,
Volume 10, Issue 3 (9-2023)
Abstract

Introduction
Every year, natural hazards occur with great severity and sometimes they destroy people completely Today, science has proven that natural hazards cannot be avoided. He simply considered a natural event and did not pay attention to their complex causes. Most of these causes are attributed to a combination of socio-economic factors. But it is possible to reduce their consequences by carefully planning against such accidents. When these hazards and disasters have a human aspect and affect humans, human activity and human environment, they are introduced as crisis.
According to the statistics of the Food and Agriculture Organization of FAO, 5-15% of agricultural products are lost annually due to damage caused by frost and frost, this number reaches more than 40% for some sensitive garden products, especially almonds, pistachios and apricots. . The amount of damage caused by this complication in Iran is more than 500 million dollars. Rural settlements suffer the most damage after a drought. Thus, there is a significant relationship between the risk management of agricultural activities with most environmental components and natural disasters such as drought, flood, frost, etc. up to the 99% confidence level. In order to reduce the effects of natural hazards in rural areas, there are various strategies that can be used to manage the risk of natural hazards , diversification of agricultural productio, contract farming and increasing farmers' awareness of natural hazards.
Gardens are one of the most important sources of livelihood in rural areas in Tuysarkan city in Hamadan province. Tuysarkan city has 7600 hectares of garden lands, which includes 14% of all gardens in Hamadan province. Due to its geographical location, weather conditions and geological structure, this city is exposed to various natural hazards. Among them, we can mention drought, land subsidence, frost and earthquake. Identifying natural hazards in Tuiserkan city and the effects of these hazards, as well as the actions of the local community to reduce existing hazards, are among the most important goals of this research.
Research Method
In the current research, we tried to use different methods so that the subject can be better investigated from different angles of research. This research is applied in terms of purpose and based on a descriptive-analytical research plan and is considered analytical-exploratory in nature. The research data has been collected through questionnaires and official statistics of institutions such as Iran Water Resources Management Company and the country's Meteorological Organization. Data analysis has been done descriptively and analytically using Excel and GIS software.

Research Results
The results of the research show that the most important hazards in the field of horticulture in the central part of Tuiserkan are frost in the first place and drought and hail in the second and third places. Also, other results show that the most important risk that affects the livelihood and income of the local community is the annual frost of gardens, which has caused the migration of some family members, and the amount of income is also affected by this risk. Regarding the solutions proposed by the local community to reduce the effects of natural hazards on walnut orchards, providing financial facilities, using information technology, and planting cold-resistant species were among the most important solutions proposed by the local community. Regarding the analysis of open questions and conducted interviews, Netaj shows that the most important measures to reduce the effects of natural hazards (freezing, drought and hail) on walnut orchards are: heating the orchard environment, using resistant and using drip irrigation. Also, the evaluation of the analysis of local knowledge and the experience of the past regarding measures to reduce the effects of frost on walnut orchards shows that the actions of the past are not very popular with the current generation and they are doing the same thing that the past did. With this difference, the ancients believed more in luck and destiny than in practical action. Finally, from the point of view of the local community, the best measure to reduce the effects of frost on the walnut orchards in the central part of Tuiserkan is genetic modification of the orchards and cultivation of resistant species.

 


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb