Search published articles


Showing 2 results for Gholamnia

Hamid Alipour, Sayedenegar Hasheminasab Hasheminasab, Amir Hossein Hatefi, Azam Gholamnia, Yasser Shahnavaz,
Volume 1, Issue 2 (7-2014)
Abstract

Wind erosion is important in areas with less than 150 mm of rainfall Measuring the extent and severity of wind erosion in many countries, including Iran, there is no station to measure wind erosion sediments and so the deposition estimation methods rely on empirical models so that in many cases there are measurement errors. With estimates wind and water erosion and deposition potential compared using IRIFR EA and MPSIAC models in semi-arid Nematabad Bijar watershed concluded that the IRIFR model quantitatively and qualitatively accuracy and, due to a 22.6% wind erosion and 77.4 percent water erosion effective in reducing the fertility of soil (Ahmadi et al, 2006). This study estimates deposition and wind erosion potential using IRIFR method in esfarayen Miandasht region.

In this study, the data collection and basic research in the area uses of maps such as topography, geology, geomorphology, land capability, vegetation, and include information and meteorological studies, field visits, and the prevailing wind direction in the form of desert and question naires were completed and work units to people in another way - specific preparation, IRIFR experimental model of wind erosion in each of the work units were defined the land to wind erosion susceptibility map was prepared using IRIFR and deposition potential temperature using the relationship between precipitation and sediment yield were obtained. After scoring each of the factors affecting wind erosion facies geomorphology (erosion) and the sum of given annual sediment production rates, the rate of erosion severity maps were produced in ArcGIS environment. Soil erosion severity and sedimentation of the area, were obtained nine factors affecting wind erosion scores are considered in five classes.

The results showed erosion class I (very little) with an area of ​​about 11287.21 acres more land erosion. This erosion class is includes geomorphological facies 1-1-2 (water erosion on the erosion piedmont) and 1-2-2 (water erosion on the apandajz piedmont). and class IV (erosion) with an area of ​​6682.45 acres, is the second largest in the area. This erosional class also includes geomorphological facies detachement region - farm lands – fine desert pavement and the stream. Among stream geomorphologic facies (5-3-2) and arable land (2.3.2) have the most the highest amounts of precipitation.

Wind erosion in the miandasht region,  include 8 erosional form and severity of erosion stream facies, etachement region, farm lands and fine desert pavement have high erosion rates. Topography is flat and low-slope land in the north eastern parts of the area where directly affected by the prevailing winds, led to the destructive power of wind improve. One of the best ways to combat wind erosion in the area around the farm and out carminative Miandasht construction area of agricultural land around the study area and the direction of the prevailing winds in parts of the east, the north east is. The study area of wind erosion control perspective is a set of constraints and capabilities. Fine tissue silt abundant salts in the soil and reduces adhesion of soil particle aggregate structure fragmentation and reduce the threshold velocity of wind erosion in the region and the area are prone to erosion. Existence drought resistant species such as Haloxylon prsicum Artimisia sp. in the region can be developed that will help to control wind erosion.


Saeid Hamzeh, Zahra Farahani, Shahriar Mahdavi, Omid Chatrobgoun, Mehdi Gholamnia,
Volume 4, Issue 3 (9-2017)
Abstract

As a result of climate change and reduction in rainfall during the last decade, drought has become big problem in the world, especially in arid and semi-arid areas such as Iran. Therefore drought monitoring and management is great of important. In contrast with the traditional methods which are based on the ground stations measurements and meteorological drought monitoring, using the remote sensing techniques and satellite imagery have become a useful tool for spatio-temporal monitoring of agricultural drought. But using of this technique and its results still need to be evaluated and calibrated for different areas.
The aim of this survey is to study the spatial and temporal patterns of drought using remote sensing and the regional meteorological data in the Markazi province. For this purpose, the MODIS satellite data between the years of 2000-2013 have been used to monitor and derived vegetation indices. Drought indices based on satellite data including the Normalized Difference Vegetation Index (NDVI), Vegetation Condition Index (VCI), Temperature Condition Index (TCI), Temperature Vegetation Dryness Index (TVDI), and Soil Water Index (SWI) were obtained from the MODIS satellite data for the period of study for different temporal scales (seasonal, biannual and annul).Then, correlation between obtained results from satellite data and standardized precipitation index (SPI) have been analyzed in all time periods.
Results show that study area has a low to medium vegetation cover. According to the results, the climate situation of the study area is more compatible with the seasonal results of the VCI, and VCI was selected as the best indicator for agricultural drought monitoring in the study are. The obtained results from the applying of VCI over the area show the drought condition in 2000 and 2008 and the wetness in 2009 and 2010 during the study period.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb