Search published articles


Showing 1 results for Haghighat

Mr. Saeed Bazgeer, Ms. Faezeh Abbasi, Mr. Ebrahim Asadi Oskoue, Mr. Masoud Haghighat, Mr. Parviz Rezazadeh,
Volume 6, Issue 1 (5-2019)
Abstract

Assessing the Homogeneity of Temperature and Precipitation Data in Iran with Climatic Approach
 
Extended Abstract:
Qualitative evaluation and validation of atmospheric parameters such as precipitation and temperature are the most important condition for statistical analysis in climatic and hydrological researches. In addition, the meteorological and climatological data have a crucial role in transportation, agriculture, urbanization and health services.  Therefore, it is clear that using wrong data source for atmospheric investigations is the first hazard in natural hazards analysis. This study aimed to investigate the homogenization of minimum and maximum temperatures and precipitation data for 36 weather stations over different climatic classes in Iran. The Standard Normal Homogeneity Test (SNHT), (Alexanderson and Moberg, 1997), Pettit test (Pettit, 1979), Cumulative Deviation test (Buishand, 1982) and Worsley’s Likelihood Ratio test (Worsley, 1979) were carried out to study homogenization of minimum and maximum temperatures and precipitation data (1966-2015). The results revealed that 91.5 % and 88.5 % of minimum and maximum temperatures data, respectively, were in non-homogenized category. Although, Isfahan, Saghez and Gorgan for minimum temperature and Bandar-e Anzali, Sharekord, Kashan and Saghez for maximum temperature showed a homogenized condition with 5 % level of significance. The results showed most of the weather stations (28 out of 36 stations) had homogenized precipitation data. Even though, seven stations including Birjandd, Kerman, Kermanshah, Saghez, Sanandaj and Tabriz had homogenized precipitation data. The Urmia weather station was in doubtful class. That is precipitation data of Urmia weather station were homogenized by two tests results and were non-homogenized with other two tests of homogenization. The spatial distribution of trend variations of minimum temperature average was between -2.8 to 2.8 degree Celsius over the country. Moreover, maximum and minimum variations of minimum temperature occurred in northeast and northwest of the country, respectively. There were a significantly increasing trend (p<0.01) in most of the regions. The results also indicated that the significant variations happened for maximum temperature in most of the weather stations, mainly in northern half of the country. The minimum temperature jump was mostly found in 1985, 1994 and 1998 years during the study period (1966-2015). The maximum variations of minimum temperature were in Mashhad, Shahroud, Ahvaz, Yazd and Semnan weather stations with 2.8, 2.3, 2.2, 2 and 2 degrees Celsius, respectively, jump for above mentioned years during 1966-2015. In addition, the minimum change in minimum temperature was occurred in Birjand, Urmia and Bandar Abbas with a jump of 0.6 degrees Celsius. It should be mentioned that, unlike other stations, the Khorramabad (Lorestan Province) and Fasa (Fars Province) had a decreasing trend for minimum temperature. It changed from 10.3 to 8.3 and from 11.8 to 10.2 degrees Celsius in Khorramabad and Fasa, respectively. The results showed that the commencement of maximum temperature jump for most of the weather stations happened in 1998 with 1.1 degrees’ Celsius change. According to our study, a remarkable decrease in precipitation data was occurred in west and northwest of the country. There was a depletion of 80 to 150 millimeters from 1998 in Tabriz, Sanandaj, Saghez and Kermanshah weather stations during study period (1966-2015). Besides, 25 to 45 millimeters reduction in precipitation was found in south and southeast of the Country which has arid climate including Birjand (South Khorasan Province), Zabol (Sistan and Baluchestan Province) and Kerman. It was revealed that the variations of minimum temperature were larger than maximum temperature which was in agreement with results obtained by Rafati and Karimi, 2018. The results showed that the start of increasing maximum temperature in most of the weather stations was in 1998. It could be due to increasing the global temperature which is in accordance with results found by Steirou and Koutsoyiannis, 2012. The results revealed that about 80 % of precipitation data of weather stations were homogenized. These results were in agreement with results obtained by Hosseinzadeh Talaee et al., 2013. The results indicated that tests of homogenization for minimum and maximum temperatures and precipitation data could use in different climate over the country. Therefore, it could not allocate a single test to a particular climate type. In conclusion, it should be noted that before any analysis pertaining to environmental hazards, the calibration and maintenance of the weather instruments should be carried out periodically. In addition, the metadata and station history for relocation of the weather station should be checked. The relocation can create great changes in meteorological parameters due to elevation, latitude, longitude and land use/land cover differences between two sites.
 
Key Words: Homogeneity tests, Climate Data, Weather Station, Metadata
 
 
 

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb