Showing 7 results for Heidari
Vakil Heidari-Sareban, Ali Majnouni-Toutakhaneh,
Volume 3, Issue 4 (1-2017)
Abstract
Nowadays, the severity of the drought hazard has reached a point that has affected all the rural and urban areas surrounding it. Increasing the resilience of villages via livelihood solutions, is one of the best strategies for reducing the vulnerability of villages against natural hazards such as drought. The eastern side of the Lake Urmia consists of the six cities of Osku, Azarshahr, Bonab, Shabestar, Ajabshir and Malekan. Totally, there are 199 villages in this region, which are affected by the drought of the Lake, directly and indirectly and according to the statistics, the quantitative and qualitative reduction in agricultural and livestock productions and soil quality, the incidence of respiratory diseases and … have risen sharply compared to the past and a number of villages have been evacuated. Also because of the lack of a coherent strategy, which should be taken by the planners and authorities, the important measures to revitalize the Lake has not been taken yet and the dimensions of the threat are increasing day by day.
Current study investigate the factors affecting the resilience of rural settlements of the eastern side of the Lake Urmia against Drought. This is an applied and analytic-explanatory research. The data is collected by questionnaire from the villagers living in rural areas of the six cities, which are the statistical population of the research and the total number of the villages estimated 199 with 232295 persons.
The standardized Perception Index (SPI) is used to estimate the varying degrees of the villages in the eastern side of the Lake Urmia. In the next step, the possession index for each of the villages was calculated and the studied villages were classified based on it. On this basis and by considering the four status of drought and the three levels of possession, after sorting the villages on the basis of these two indexes, 43 villages were chosen from different regions of the eastern side of the Lake as the first level of analysis, using systematic random selection. Also, to classify the villages in the regard of possessing of the development facilities, the composite indicators called Morris pattern and 47 existing items are used, which are calculated in 9 different indexes. Finally, the obtained information were analyzed using SPSS and GIS software.
Regarding to the research findings at the eastern side of the Lake and on the basis of Standardized Precipitation Index (SPI), about 78% of this area has been experiencing drought. Also, the status of the overall indicators of household's livelihood capital on the basis of the Normal Scale from 0 to 10 is 3.34, which shows the unfavorable status of this index. The results of the study in the field of the level of civil and institutional development showed that on the basis of the Normal scale from 0 to 10, civil development is 4.86 and institutional development is 3.69. Lastly, the research findings for the three levels of the sustainable development of the livelihood shows that the livelihood diversification is 3.61, in depth agriculture 3.24 and migration strategy is 3.02. The analysis of the results of the sustainable livelihood shows that the decrease of drought of the villages increases the diversity of the livelihood of the villagers. According to the results obtained, the mean of the resilience index of the investigated households on the basis of 0 to 10 equals to 4.86, which is close to the average level. The classified distribution of the resilience level and the focus of the more than of 56% of the households with average level of resilience confirms this situation. 30.26% of the households has low resilience and 15.64% has high resilience in the face of existing conditions. Upon this basis, the highest amount of the resilience equals to 5.38, which exists in the villages with severe drought conditions and by decrease of the drought, the resilience of household’s decreases. Finally it can be said that the villages with a long history of vulnerability from drought and also having more intense droughts, has a higher resilience level in dealing with the situation.
According to the results, the highest amount of vulnerability exists in the villages with low experience in dealing with the long-term conditions of drought, which their economic and social structures are not prepared to deal with the conditions. While the average amount of the livelihood capitals and the resilience of the studied statistical population do not show an appropriate conditions, but totally, the results and relationships of the studied variables conforms the role of possessing all dimensions of livelihood capital on taking appropriate approach to dealing with the conditions of drought in the Lake Urmia. In the field of taking the approaches of diversifying the livelihood resources of the villagers, there are several scientific and examined solutions, such as considering the education and awareness as a definite reality, also the knowledge and skills of the villagers in the fields of modifying the crop patterns, water saving strategies, the use of efficient products and making use of the other high-income jobs must be increased.
In the field of educational solutions, besides providing modern knowledge and international successful experiences, it must be possible to make use of the indigenous knowledge and experiences of the villagers.
Mostafa Karampoor, Yeganeh Khamoshian, Hamed Heidari, Fatemeh Amraei,
Volume 8, Issue 2 (9-2021)
Abstract
Air pollution, as one of the most important environmental hazards in urban areas, is closely related to weather conditions. Today, pollution in metropolitan areas has become an important issue that requires the study and presentation of practical solutions to improve living conditions in this area. Therefore, understanding the relationship between synoptic systems and air pollutants helps a lot in how to solve environmental problems and future planning. Therefore, in this study, compression algorithms of carbon monoxide emission and transfer from domestic and foreign sources were analyzed. For this purpose, GEOS-5 / GMAO / NASA satellite images were used. The results showed that the highest amount of pollution from the seasonal point of view is related to the cold and early morning seasons and the lowest is related to the early afternoon and hot season of the year. And Khuzestan are densely populated carbon monoxide cores. Low pressures of the eastern Mediterranean play an important role in reducing pollutants in the southwest of the country and in the south of the country, under the influence of atmospheric currents from the topographic cut of Bandar Abbas, air streams polluted with carbon monoxide are able to penetrate into the interior to the southern half of Kerman. Increased by low pressure systems in Afghanistan and Pakistan. The Zagros Mountains also play an important role in preventing the entry of pollutants produced by western neighbors into Iran. In summer, Iran is polluted by carbon monoxide carriers by monsoon currents from central and southern Africa to Iran and has caused a lot of pollution
Dr. Mostafa Karimi, Ms Sousan Heidari, Dr. Somayeh Rafati,
Volume 8, Issue 2 (9-2021)
Abstract
The role of environmental and climatic environment on the transport and emission of carbon monoxide pollutants Iran in 2018
Introduction
Air pollution, as one of the most important environmental hazards in urban areas, is closely related to weather conditions. Today, pollution in metropolitan areas has become an important issue that requires the study and presentation of practical solutions to improve living conditions in this area. Therefore, understanding the relationship between synoptic systems and air pollutants helps a lot in how to solve environmental problems and future planning. Therefore, in this study, compression algorithms of carbon monoxide emission and transfer from domestic and foreign sources were analyzed. For this purpose, GEOS-5 / GMAO / NASA satellite images were used. The results showed that the highest amount of pollution from the seasonal point of view is related to the cold and early morning seasons and the lowest is related to the early afternoon and hot season of the year. And Khuzestan are densely populated carbon monoxide cores. Low pressures of the eastern Mediterranean play an important role in reducing pollutants in the southwest of the country and in the south of the country, under the influence of atmospheric currents from the topographic cut of Bandar Abbas, air streams polluted with carbon monoxide are able to penetrate into the interior to the southern half of Kerman. Increased by low pressure systems in Afghanistan and Pakistan. The Zagros Mountains also play an important role in preventing the entry of pollutants produced by western neighbors into Iran. In summer, Iran is polluted by carbon monoxide carriers by monsoon currents from central and southern Africa to Iran and has caused a lot of pollution.
materials and Method
The geographical location we study in this study is Iran. Iran is the 16th largest country in the world. Iran is located in the northern hemisphere, the eastern hemisphere in Asia and in the western part of the Iranian plateau and is one of the Middle Eastern countries. Meridian 5 44 passes east of the westernmost point of Iran and meridian 18 63 passes east of the easternmost point of Iran. 1648195 sq km is bordered by Armenia, Azerbaijan, and Turkmenistan to the north, Afghanistan and Pakistan to the east, Turkey and Iraq to the west, the Persian Gulf and the Sea of Oman to the south. Iran is one-fifth the size of the United States and almost three times France. . Iran is a mountainous country. More than half of the country is covered by mountains and heights, and less than 1/4 of it is arable land. In general, Iran's heights can be divided into four mountain ranges: North, West, South and Central Mountains. East divided, which is therefore the twenty-third highest mountain in the world.
This study is based on the method of environmental analysis to focus on circulation, so that based on the concentration of carbon monoxide in 2018, synoptic patterns of this phenomenon have been identified. Satellite imagery of surface carbon monoxide was then obtained from three GEOS-5 / GMAO / NASA organizations. Also for synoptic analysis, MSLP and WS satellite images were received and analyzed from GFS / NCEP / US National Weather Service organizations and also one of the sensors used for pollutant studies is MOPITT. The MOPITT sensor is a tool for measuring troposphere pollution that can detect atmospheric pollution. This sensor is the first satellite sensor designed for use in gas correlation spectroscopy and is part of NASA's Operational Program (ESE), which has been operating since 1999 and is installed on three satellites Terra, Aura, Aqua Depending on the type of mission in space, it acts as an orbiter. This sensor measures only two variables of methane and carbon monoxide in the atmosphere of the troposphere of the atmosphere, for which purpose 3 bands and 8 channels for measuring monoxide with a size of 62.4 microns (using 4 channels), 33.2 It uses microns (using 2 channels) and methane measuring 26.2 microns (using 2 channels). The MOPITT sensor is specifically designed to measure carbon monoxide. The geographical boundaries of the study area were also selected to include all atmospheric systems affecting the study area.
Conclusion
The meteorological condition and the physical and dynamic properties of the atmosphere can play an important role in the level of air protection. The main factor that can cause the scattering and transmission of air forces is the use of the ground and the levels of reception of the atmosphere, and the synoptic systems as a service provider providing services for upward movement and distribution of air pollutants, as well as the definition of chalk. As a decision made in this field, Iran can use its images in this field in 2018 2018, MSLP, WS will provide you with GFS / NCEP / US National Weather Service. With great intensity you can go to Tehran and southwest to destroy yourself and access your officials. In the imagination carbon monoxide is possible and used in the southwest of the country. Now in your country and change the status of lists proposed by Coriolis, increase the high pressure of carbon monoxide in Mr. Tropical from the Middle East and Iran. This program allows you to modify your suggested lists. Carbon monoxide pollutants sent to a drawer in the international province of the country and available in Bandar Abbas, a road nest free from high mountains and as a corridor company you can get from this par of the air pollution as carbon monoxide through the air to this one Use the land up to the Kerman province.
Keywords: Carbon monoxide, Compression systems, Monson, Atmospheric pollution, Topography
Mehrdad Hadipour, Mahdye Heidari, Mohammadali Zahed, Seyedhosein Hoseini Lavasani,
Volume 9, Issue 1 (5-2022)
Abstract
Investigation of Construction Wastes Release in Roadside Using AHP
Introduction
Although construction waste is an integral part of municipal waste, due to the differences between this waste and waste and environmental issues, a suitable model should be designed for optimal productivity and acquisition of resources. The increasing volume of urban materials and rubbish, especially the rubbish from the destruction of their construction and worn-out urban textures, has created many problems in large cities, as well as environmental problems that have arisen due to unprincipled and unprofessional disposal of these materials. Has attracted these materials. Research shows that the amount of this waste is equal to 10 to 15% of the total materials used in construction operations. This amount is much higher than what is estimated by the estimators.
Data and research method
In Iran and other developing countries, construction and construction waste is a major part of municipal waste, which in addition to high costs for its disposal, also has adverse consequences on the environment. The volume of this garbage is so much that now this issue has become a social and environmental problem not only in Iran but also in developed countries due to the limitation of natural resources and preservation of national capital for future generations as well as environmental protection And it is necessary because with proper management and efficient planning and reducing the volume of construction waste, not only the waste of natural resources and national capital is prevented, but also additional and ancillary costs are reduced and it is economically beneficial.
In this study, first, the effective criteria in selecting the burial site in the study area are determined. These criteria are reviewed and used by various standards, including standards related to the Environmental Protection Organization, the Ministry of Interior and international standards, as well as by reviewing resources and studies on the process of locating landfills in the country and abroad and by examining the conditions of the region. The study and the influencing factors are compiled in the study area. The layers related to each criterion in the relevant table will be prepared, processed and converted from the relevant organizations. The method of this dissertation is applied-modeling in terms of purpose, because on the one hand, the concepts and rules related to the field of knowledge are carefully analyzed, and on the other hand, the relationships between these concepts and rules are evaluated and determined by experts. In this study, there is a need to use the decision theory method to evaluate and investigate the status of construction waste disposal along roads to increase trust and confidence in decision making.
The data analysis tools of this research are SPSS, Expert Choice and Matlab for conducting the research. In the research process, after data collection, the next step involves data analysis. Cronbach's alpha coefficient was used to evaluate the reliability of the localization tools of the research components. In order to describe the data, the mean and standard deviation of the research data have been used.
The four-step process of multi-criteria decision-making process and fuzzy logic calculations to investigate the dumping of construction debris along roadsides is as follows:
Step 1 - Modeling causal relationships based on similarity to the ideal solution
Step 2 - Parallel comparisons and determining the weight of causal relationships based on the evaluation of decision options between the criteria for assessing the status of construction debris on the sidewalks,
Step 3 - Prioritize Based on Causal Relationships Based on Evaluation of Decision Options
Step 4 - Fuzzy Prioritization and Final Analysis Investigation of Construction Waste Disposal Status
Result and Discussion
The most important results of the study of the dumping of construction debris along the roadsides are that,
1- The most important criterion in the cluster "Environmental factors of construction waste disposal" with code (A), "Soil pollution in the city" with code (AB) with fuzzy network weight of 0.096; And
2- The most important criteria in the cluster "Applications of GIS in urban management of construction debris disposal" with code (B), "Urban green space management" with code (BA) with fuzzy network weight equal to 0.191; And "Urban management related to health" with code (BB) with fuzzy network weight equal to 0.120; Were calculated. on the other hand,
3- The most important criterion in the cluster "Economic factors of construction waste disposal" with code (C), "Construction waste management training cost" with code (CD) with fuzzy network weight equal to 0.123; Prioritized,
conclusion
The results of the present study can be said that, after reviewing the theoretical foundations of the research and reviewing the research background, it was found that due to research gaps in the fields of economic factors of construction waste disposal, GIS applications in urban management, construction waste disposal, environmental factors, Utilization of a combined fuzzy multi-criteria decision-making methodology to investigate the status of construction debris dumping along roadsides; It is possible to realize the innovation of the present research in filling the mentioned research gaps.
Key words: Construction Debris, Civil Waste Management, Multi-Criteria Decision Making, Karaj.
Hamed Heidari, Darush Yarahmadi, Hamid Mirhashemi,
Volume 9, Issue 2 (9-2022)
Abstract
Revealing surface reflection forcings of land cover in Lorestan province using MODIS sensor products
Introduction
Human interventions in natural areas as a change in land use have led to a domino effect of anomalies and then environmental hazards. These extensive and cumulative changes in land cover and land use have manifested themselves in the form of anomalies such as the formation of severe runoff, soil erosion, the spread of desertification, and salinization of the soil. The main purpose of this study is to reveal the temperature inductions of the land cover structure of Lorestan province and to analyze the effect of land use changes on the temperature structure of the province. In this regard, the data of land cover classes of MCD12Q2 composite product and ground temperature of MOD11A2 product of MODIS sensor were used. Also, in order to detect the temperature inductions of each land cover during the hot and cold seasons, cross-analysis matrix (CTM) technique was used. The results showed that in general in Lorestan province 5 cover classes including: forest lands, pastures, agricultural lands, constructed lands and barren lands could be detected. The results of cross-matrix analysis showed that in hot and cold seasons, forest cover (IGBP code 5) with a temperature of 48 ° C and urban and residential land cover (IGBP code 13) with a temperature of 16 ° C as the hottest land use, respectively. They count. In addition, it was observed that the thermal inductions of land cover in the warm season are minimized and there is no significant difference between the temperature structure of land cover classes; But in the cold season, the thermal impulses of land cover are more pronounced. The results of analysis of variance test showed that in the cold period of the year, unlike the warm period of the year, different land cover classes; Significantly (Sig = 0.026) has created different thermal impressions in the province. Scheffe's post hoc analysis indicated that this was the difference between rangeland cover classes and billet up cover.
materials and Method
In this study, to reveal the relationship between land cover levels and different land use classes, cross-information matrix analysis was used in the ARC-GIS software platform. Since one of the main objectives of the study was to investigate and reveal the albedo inductions of land cover classes in Lorestan province, so the relationship between these two factors was investigated by cross-matrix analysis technique. In this regard, two sets of data were used. The first set of data was related to land cover classes of MODIS sensor composite product with a spatial resolution of 1 km and hierarchical data format (MCD
12(Q2 (MCD product) which was obtained from the database of this sensor
Conclusion
Land cover classes or perhaps it can be said that land use is one of the most important shapers and determinants of climate near the earth. In this study, it was observed that in general, 5 major land cover classes in the province are separable, among which rangeland and forest lands account for 85% of the total land cover of the province. On the other hand, it was seen in this study that the average spatial albedo of the province in spring, autumn and winter is about 0.2, which is very close to the global value of this component, but in winter the average value of this index in the province reaches 0.3, which can be increased Shows attention. The five land cover classes in the province had their own unique albido induction in winter, which was separable and distinct from each other, but in spring, summer and autumn, no significant distinction of albido induction of these land cover was revealed.
Keywords: Land cover changes, Land surface temperature, Cross-information analysis matrix, Lorestan province
Ms. Sousan Heidari, Dr. Mostafa Karimi, Dr. Ghasem Azizi, Dr. Aliakbar Shamsipour,
Volume 9, Issue 4 (3-2023)
Abstract
Explaining the spatial patterns of drought intensities in Iran
Abstract
Recognition of spatial patterns of drought plays an important role in monitoring, predicting, confronting, reducing vulnerability, and increasing adaptation to this hazard. This study aims to identify the spatial distribution and analyze the spatial patterns of annual, seasonal, and monthly drought intensities in Iran. For this purpose, the European center Medium-Range Weather Forecast (ECMWF) data for the period 1979-2021 and the ZSI index were used to extract the drought intensities. To achieve the research goal and explain the spatial pattern of the frequency of drought intensities (Extreme, severe, moderate, and weak), spatial statistical methods such as global Moran’s I, Anselin local Moran’s Index, and hot spots were used. The results of the global Moran’s I showed that with increasing intensity, the spatial distribution of drought events has become clustered. The spatial distribution of the local Moran’s Index and hot spots also confirms this. Very clear contrast was observed in the local clusters of high (low) occurrence as well as hot (cold) spots of severe (Extreme) yearly droughts in the south, southeast, and east. In autumn, weak to Extreme droughts show a southeast-northwest pattern. But in spring and winter, the spatial pattern of drought is very strong as opposed to severe and moderate drought. Despite the relatively high variability of maximum positive spatial Autocorrelation of severe and Extreme monthly droughts, their spatial pattern is almost similar. The spatial clusters of severe and very severe droughts in the northwest, northeast, and especially on the Caspian coast, are a serious warning for the management of water resources, especially for precipitation-based activities, such as agriculture.
Introduction
Drought or lack of precipitation over some time is the most widespread natural hazard on the earth compared to its long-term average. This risk negatively affects various sectors such as hydropower generation, health, industry, tourism, agriculture, livestock, environment, and economy. To reduce these negative or destructive effects, it must be determined how often drought occurs during the period and in which areas it is most severe. Doing so requires determining the characteristics of the drought. These characteristics include area, intensity, duration, and frequency of drought. Discovering the geographical focus, recognizing the pattern governing the frequency of occurrence and temporal-spatial distribution as well as changes in the dynamics of this hazard facilitate an important role in drought monitoring, early warning, forecasting, and dealing with these potential hazards; this information can be used to create a drought plan by providing analysts and decision-makers with ideas about drought, helping to reduce the negative and vulnerable effects and ultimately make it easier to protect or replace for greater adaptation. Many researchers have been led by these approaches to the use of statistical analysis. Numerous studies have been conducted in the study of climatic phenomena such as drought with space statistics techniques in various regions, including China, India, South Korea, and even Iran. Part of the domestic research on spatial patterns of drought is without the use of spatial statistics and a limited number of others who have used these analyzes have only studied the overall intensity of drought and have not studied the spatial patterns of different drought intensities. The main purpose of this study is to identify the distribution and spatial patterns of drought intensities in Iran using spatial analysis functions of spatial statistics based on the frequency of drought intensities (Extreme, severe, moderate, and weak) with yearly, seasonal and monthly multi-scale approach. Therefore, this study will answer the questions: a) What is the spatial distribution of drought intensity data in Iran? And b) What is the variability of spatial patterns of Iranian droughts at different time scales?
Material &Method
ERA5 monthly precipitation data for a period of 43 years from 1979 to 2021 were used for this study. an array of dimensions of 78×59×504 of data were formed in MATLAB software in which 78×59 is the number of nodes with a spatial resolution of 0.25 degrees and 504 represents the month. After creating the database, the ZSI index was used to calculate the severity of drought in annual, seasonal, and monthly comparisons. Finally, to achieve the research goal and explain the spatial pattern governing the frequency of drought intensities (Extreme, severe, moderate, and weak), spatial statistical methods such as global Moran’s I, Anselin local Moran I and hot spots was used.
Discussion of Results
Due to its ecological conditions, geographical location, and location in an arid and semi-arid region of the world, Iran is among the most vulnerable countries due to natural hazards, including drought. It has experienced many severe droughts in the last century. The occurrence of drought and its effects is one of the major challenges of water resources management in this century. The results of the Global Moran’s Index for all three annual, seasonal, and monthly scales showed a highly clustered pattern of drought events in the country. Spatial clustering of the occurrence of severe and Extreme yearly droughts in the eastern, southeastern, and southern regions is also an interesting result. These conditions are due to low precipitation and high spatial variation coefficient in these areas. This contrast of spatial clusters of drought intensities indicates the relationship between drought and temporal-spatial anomalies of precipitation so that with increasing precipitation, spatial variability of precipitation decreases, and consequently spatial homogeneity of precipitation increases. severe and moderate-intensity spots in the south-southeast in autumn and spring can be affected by fluctuations in the beginning and end of the monsoon season in South Asia due to the high variability of atmospheric circulation at the beginning and end of precipitation in these areas. Some studies have also shown the relationship between precipitation in these areas and the monsoon behavior of South Asia. Extreme drought events in winter and spring have had a positive spatial correlation pattern in the southwest, west, and northwest. However, precipitation at this time of year is concentrated in these areas. Warm clusters or concentrations of very severe drought events in the northern strip of the country, especially in the Caspian region, can be due to the high variability of precipitation at the beginning of the annual precipitation season (late summer and early autumn). Observations of these conditions in the northern strip indicate that an event with a high frequency of severe droughts, even in rainy areas, should not be unexpected. Spatial clusters of Extreme, severe, moderate, and weak drought every month using both local Moran and hot spots statistics show the fact that in Iran, the most severe droughts have occurred in the western, northwestern, and coastal areas of the Caspian Sea. However, the absence of severe droughts or spatial clusters has been the occurrence of low drought in the southeast and to some extent in the south. On a yearly scale, the south, southeast, and east have played a significant role in the spatial cluster of severe and extreme droughts. So that these areas of the country have had positive spatial solidarity. However, in these areas, negative spatial correlation prevailed in the autumn for severe drought. This may indicate an anomaly and a tendency to concentrate more precipitation in Iran, as well as many changes in seasonal and local precipitation regimes. According to the research results, a high incidence of severe and extreme drought on all three scales (monthly, seasonal and annual) even in the wettest climate of the country (northern Iran, especially the southern shores of the Caspian Sea) shows that High-intensity droughts can occur in all parts of the country, regardless of the weather conditions.
Keywords: Natural hazards, spatial patterns, Moran statistics, spatial autocorrelation, hot spots
Dr Kiomars Maleki, Dr Mostafa Taleshi, Dr Mehdi , Dr Mohammad Raoof Heidari Far,
Volume 9, Issue 4 (3-2023)
Abstract
The results of pathological evaluation of seismic zones in the terrestrial space indicate a significant concentration of residential spaces, especially cities. It has been economic and human. Therefore, one of the desirable models in identifying, analyzing and reducing damage in urban spaces is to use the structural and functional framework of passive defense. In many recent studies, the subject of reducing earthquake damage in the territory of the physical-spatial field has been to increase the building's resistance to earthquakes. While this study by recognizing environmental components, physical-spatial, social, economic and effective indicators in each component (45 indicators) to determine the pathology and risk areas of earthquakes in a comprehensive and desirable and based on that reduction strategies Redefines risk. In other words, by recognizing and analyzing the basic concept of threat network and risk ring with passive defense approach in earthquake assessment and vulnerability in Kermanshah metropolis to form the required database structure in appropriate software environment, appropriate policy and urban crisis management measures It is designed in proportion to the earthquake risk.