Search published articles


Showing 3 results for Jahani

Ali Jahani,
Volume 3, Issue 4 (1-2017)
Abstract

Trees in urban areas have survived in a wide variety of conditions and constrains, whether developing in natural or manmade habitats. Due to environmental constrains and stresses, urban trees rarely achieve their biological potentials. Indeed, some of trees, in small groups, could excel in terms of age, biomass structure and dimensions in urban areas. In definition, tree hazard includes entirely dead or dying trees, dead parts of harmed live trees, or extremely unstable or unsteady live trees, which could be in result of structural defects and disorders or other factors that have the high risk to threaten the safety of people or property in the event of a failure especially in urban green spaces. Although the pruning or other rehabilitation and mitigation program of trees is known as the one of the principal domains of green space management, it is still includes shortcomings in terms of models and methodologies to classify or prioritize hazardous trees which need to be treated timely. The main objectives of this study were to: (1) model old Sycamore failure hazard in urban green spaces to elucidate the general and defects tree factors affecting on failure hazard; (2) prioritize the impacts of model inputs (general and defects tree factors) on tree failure hazard using model sensitivity analysis and (3) determining the trend model output changes in respond to model variables changes.

The following types of data (target trees characteristics) were solicited for each target tree: (1) General features: Tree Height (TH), trunk Diameter at Breast Height (DBH), Butt Diameter (BD) at ground surface and Vertical Length of Crown (VLC) were calculated from measured girth. Crown Spread (CS) was measured as the average of two diameters of projected drip line of the tree canopy.

(2) Tree defects: Detailed evaluation of individual trees was made according to 6 key physical defects, namely Internal Decay (ID) in percent, Length of Cracks (LC) in m, Crown Defoliation (CD) in percent, and Degree of Leaning (DL).

(3) Sycamore failure hazard classification: Sycamore Failure Hazard Risk (SFHR) classification was the probability that an entire tree, or part of it, will break and fall within the first or second year after study. Considering results of tree regular monitoring after two years, the following classes of tree failure hazard were determined. 1. Extremely Hazardous: Tree failure in the first year. 2. Semi-Hazardous: Tree failure in the second year.

ANN has been recently developed for data mining, pattern recognition, quality control, and has gained wide popularity in modeling of many processes in environmental sciences and engineering. ANN learns by examples and it can combine a large number of variables. In this study, an ANN is considered as a computer program capable of learning from samples, without requiring a prior knowledge of the relationships between parameters. To objectively evaluate the performance of the network, two different statistical indicators were used. These indicators are Mean-Squared Error (MSE), Mean Absolute Error (MAE), and coefficient of determination (R2).

In this study, the year of Sycamore failure in urban ecosystems is evaluated using tree variables and artificial neural network to determine the most effective tree variables in SFHR in urban green space. Various MLFNs were designed and trained as one and two layers to find an optimal model prediction for the SFHR and variables. Training procedure of the networks was as follows: different hidden layer neurons and arrangements were adapted to select the best production results. Altogether, many configurations with different number of hidden layers (varied between one and two), different number of neurons for each of the hidden layers, and different inter-unit connection mechanisms were designed and tested.

In this research, 200 trees were totally selected, then general and defects tree variables were recorded in urban green space. Considering the aim of study, which is discovering the relation between general and defects tree variables with SFHR class for modeling, the year of tree failure, was recorded.  

In the structure of artificial neural network, general and defects tree variables were tagged as inputs of artificial neural network and SFHR class was tagged as output layer. Considering trained networks (the structure of optimum artificial neural network has been summarized in Table1), Multilayer Perceptron network with one hidden layer and 4 neurons in layer created the best function of topology optimization (Table2) with higher coefficient of determination which equals 0.87 for class 1 and 0.9 for class 2. Sensitivity analysis respectively prioritizes Crown Spread (CS), Vertical Length of Crown (VLC), Degree of Leaning (DL) and Butt Diameter (BD), which effect on SFHR in class1 (Fig1) and class 2 (Fig2).

The determined procedure of SFHR changes with CS changes in the region declares SFHR increase nonlinearly with an increase in CS. The determined procedure of SFHR changes with VLC changes o declares that SFHR increase nonlinearly with an increase in VLC of tree. The determined procedure of SFHR changes with DL changes in the region declares SFHR increase nonlinearly with an increase in DL. The determined procedure of SFHR changes with BD changes o declares that SFHR increase nonlinearly with an increase in BD of tree.

Nowadays, artificial neural network modeling in natural environments has been applied successfully in many researches such as water resources management, forest sciences and environment assessment. The results of research declared that designed neural network shows high capability in SFHR modeling which is applicable in green space management of studied area. Sensitivity analysis identified the most effective variables which are influencing SFHR. So, to identify hazardous trees in study area, we should pay attention to the CS of Sycamore trees as the variable with high priority in determination of SFHR. We believe that, in hazardous trees management in urban green spaces, we should pay attention to some modifiable factors of tree, which are CS and VLC, by timely tree pruning. We suggest urban green space manager to run SFHR model, for tree stability assessment, before decision making on hazardous trees.


Ali Jahani,
Volume 6, Issue 2 (9-2019)
Abstract

Risks assessment of forest project implementation in spatial density changes of forest under canopy vegetation using artificial neural network modeling approach
 
Nowadays, environmental risk assessment has been defined as one of the effective in environmental planning and policy making. Considering the position and structure of vegetation on the forest floor, the main role of forest under canopy vegetation cover can be noted in attracting and preventing runoff in the forest floor and reducing subsequent environmental risks. The purpose of this article is forest under canopy vegetation density changes modeling considering forest ecosystem structure and forest management activities as an environmental risk. The main objectives of this study were to: (1) model forest under canopy vegetation density in forest ecosystem to elucidate the ecological and management factors affecting on under canopy vegetation density; (2) prioritize the impacts of model inputs (ecological and management factors) on under canopy vegetation density using model sensitivity analysis and (3) determining the trend model output changes in respond to model variables changes.
In this study, Land Management Units (LMUs) were formed in the region considering ecological characteristics of land. LMUs were mapped out based on Ian McHarg’s overlay technique by ARC GIS 9.3 software. Ecological factor classes of an LMU differ from ecological factor classes of adjacent LMUs (at least in one ecological factor class). The following types of data were solicited for each LMU:
(1) Ecological variables: Altitude or elevation (El), Slope (Sl), Aspect (As), soil depth (SD), Soil Drainage (SDr),Soil Erosion (SE), Precitipation (Pr), Temprature (Te), trees Diameter at Breast Height (DBH), Canopy Cover (CC), and forest Regeneration Cover (RC).
(2) Management variables: Cattle Density (CD), Animal husbandry Dsitance (AD), Road Dsitance (RD), Trail Dsitance (TD), logs Depot Dsitance (DD), Soil Compaction (SC), Torist impacts (To), Skidding impacts (Sk), Logging impacts (Lo), Harvested trees volume (Ha), artificial Regeneration (Re) and Seed Planting (SP).
(3) Forest under canopy vegetation density: The percentage of under canopy vegetation density in each LMU was estimated by systematic random sampling method. In each LMU, a one square meter sample was taken. The average percentage of under canopy vegetation density in sample units of each LMU was calculated and used in the modeling process.
ANN learns by examples and it can combine a large number of variables. In this study, an ANN is considered as a computer program capable of learning from samples, without requiring a prior knowledge of the relationships between parameters. To objectively evaluate the performance of the network, four different statistical indicators were used. These indicators are Mean-Squared Error (MSE), Root Mean-Squared Error (RMSE), Mean Absolute Error (MAE), and coefficient of determination (R2).
Various MLFNs were designed and trained as one and two layers to find an optimal model prediction for the under canopy vegetation density and variables. Training procedure of the networks was as follows: different hidden layer neurons and arrangements were adapted to select the best production results. Altogether, many configurations with different number of hidden layers (varied between one and two), different number of neurons for each of the hidden layers, and different inter-unit connection mechanisms were designed and tested.
In this research, 129 LMUs were totally selected, then ecological and management variables were recorded in them. In the structure of artificial neural network, ecological and management variables were tagged as inputs of artificial neural network and the percentage of under canopy vegetation density was tagged as output layer. Considering trained networks (the structure of optimum artificial neural network has been summarized in Table1), Multilayer Perceptron network with one hidden layer and 4 neurons in each hidden layer created the best function of topology optimization with higher coefficient of determination of test data (which equals 0.857) and the lowest MSE and MAE (which are 0.866 and 0.736 respectively). Considering the results of sensitivity analysis, ecological and management variables like the forest canopy density, cattle density in forest, soil erosion and soil compaction respectively show the highest impact on forest under canopy vegetation density changes (Fig1).
 
Table1. The structure of optimum artificial neural network in forest under canopy vegetation density

Output Layer First Hidden Layer Network features
Linear Hyperbolic tangent Transmission Layer
Gradient descent Gradient descent Optimization Algorithm
0.7 0.7 Momentum
1 4 Number of Neurons
-0.9 up to 0.9 -0.9 up to 0.9 Normalization
 
Table2. The structure of optimum artificial neural network in test data
MSE MAE RMSE R2 Data The structure of network( the number of neurons)-epoch
0.716 0.678 0.846 0.931 Trainning Tanh(4)-160
0.793 0.703 0.891 0.894 Validation
0.866 0.736 0.931 0.857 Test

 

 
Fig1. The results of sensitivity analysis of artificial neural network model
 
Nowadays, artificial neural network modeling in natural environments has been applied successfully in many researches such as water resources management, forest sciences and environment assessment. The results of research declared that designed neural network shows high capability in forest under canopy vegetation density modeling which is applicable in forest management of studied area. Sensitivity analysis identified the most effective variables which are influencing under canopy vegetation density.
So, to identify hazardous LMUs in study area, we should pay attention to the canopy density of LMUs as the variable with high priority in determination of under canopy vegetation density. We believe that, in hazardous LMUs in forests, we should pay attention to some modifiable factors of LMU, which is cattle density in forest, by timely plan for livestock elimination. The forest under canopy vegetation density assessment model, in forest projects impact assessment, could be a solution in decision making about forest plan structure and implementation of similar projects in similar locations. 
 
Keywords: Forest plan, Environmental impact assessment, Multilayer perceptron, under canopy vegetation, artificial neural network
 


Zahra Mosaffaei, Ali Jahani, Mohammad Ali Zare Chahouki, Hamid Goshtasb Meygoni, Vahid Etemad,
Volume 8, Issue 3 (12-2021)
Abstract

Risk modeling of plant species diversity and extinction in Sorkheh_hesar National Park
 
Zahra Mosaffaei1, Ali Jahani2*, 3MohammadAli ZareChahouki, 4Hamid GoshtasbMeygoni, 5Vahid Etemad
 
1 Masters of Natural Resources Engineering, Environmental Sciences, College of Environment, Karaj
*2Associate Professor, Department of Natural Environment and Biodiversity, College of Environment, Karaj.
3 Professor, Department of Restoration of arid and mountainous regions, University of Tehran, Karaj
4 Associate Professor, Department of Natural Environment and Biodiversity, College of Environment, Karaj
5 Associate Professor, Department of Forestry and Forest Economics, University of Tehran, Karaj
 
 
Abstract
Full identification of hazards and prioritizing them for non-harm to nature is one of the first steps in natural resource management. Therefore, introducing a comprehensive system of evaluation, understanding, and evaluation is essential for controlling hazards. This study aimed to model and predict environmental hazards following increased degradation in natural environments by ANN. Thus, 600 soil and vegetation samples were collected from inhomogeneous ecological units. Soil samples were prepared by strip transect method according to soil depth in four profiles (5, 10, 15, 20 cm). Vegetation samples were also collected using a minimum level method using 2 2 square plots according to the type, density, and distribution of vegetation. Sampling was done in two safe zones and other uses were modeled using ANN in MATLAB environment. The optimal model of multilayer perceptron with two hidden layers, sigmoid tangent function and 19 neurons per layer and coefficient of determination of 0.90. The results of sensitivity analysis showed that soil moisture content would be effective in decreasing biodiversity and flood risk as well as increasing the risk of extinction of endemic species in the region, and then the apparent and true gravity and soil porosity and distance from the road play a key role in the degradation of cover. Vegetation has increased flooding and extinction risk. Therefore, it is recommended that measures related to soil and vegetation restoration in this park be taken to reduce future damages as soon as possible.
 
Keywords: Modeling, Artificial Neural Network, Environmental Hazards, National Park, Vegetation
 

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb