Search published articles


Showing 5 results for Lashkari

Mahmoud Ahmadi, Hassan Lashkari, Parasto Azimi,
Volume 2, Issue 2 (7-2015)
Abstract

Understanding the climate of a region as a first step and most immediate action is considered research for development projects Climatic phenomena such as floods every year irreparable damage to the soil, pastures, forests, urban and rural facilities, human and animal import Climatic phenomena such as floods every year irreparable damage to the soil, pastures, forests, urban and rural facilities, human and animal import. The first factor in causing flood is rainfall intensity that occurs at a certain time. Therefore necessary infrastructure projects, and one of the main issues in hydrological and hydro-climate is awareness of the occurrence and amount of rainfall, most likely for different periods.

     In order to implement the model of Synoptic convergent in this research and estimated probable maximum precipitation in the South West region of the Caspian

   1: The 1:50,000-scale Digital Mapping the location of all stations in the study area, Climatology, rainfall and hydrometric surveys in selected were identified on the map.

   2: The maximum instantaneous discharge rate of the highest daily rainfall stations selected surveys (1976-2011) are also studied.

   3: collection of the highest daily rainfall statistics selected stations, monthly and annual precipitation data for the period (1986-200),Facts about the daily atmospheric phenomena (cloud, wind speed, dew point temperature, air pressure) with an interval of 3 hours to 3 hours, Statistics continuing 12-hour maximum dew point of the surface (in degrees Celsius) and wind speed times (NAT) for the stations of Anzali, Rasht, Astara, Ramsar, Ardabil, Pars Abad For the first 10-day period, 10-day and 10-day return period for calculating the 50-year-old third, 80-year and 100-year and monthly statistics on the average pressure of the selected stations establishment station.

   4: Select the desired storm rainfall in 24 hours and 48 hours to obtain a return period of 50 years, 80-year and 100-year 12-hour maximum dew point and wind speed persistence for long periods, the separation of each month, and the resolution of each decade, through software SMADA and HYFA.

   5: Purvay of Rain maps and DAD chart is also the main stages of this work.

   6: Finally, weather maps, humidity maps and omega air maps at ground level, 700 level and 850 hp prepared from

    Days prior to completion until the day of rain showers in the stormy period from the NCEP / NCAR site and was ready in GRADS software environment.

     In order to realize the adiabatic saturation warmest period of the most intense storms in 1355-1390The maximum instantaneous rate of discharge and daily rainfall statistics, the most comprehensive and stations on their occurrence in the previous chapter, was studied.So the four pervasive  hurricane was  selected. Then, rain storms map were plotted in the GIS software environment and use of IDW method and Using data from the windy days selected on rainfall stations in the study area. In order to obtain the rainfall in the whole region,were regressed  between the two parameters: precipitation and elevation; and was estimated average of rainfall in the cumulative area and rainfall amount in during of the storm days. Based on the height - area tables of ​​each storm separately, DAD curves was drawn based on average rainfall in columns cumulative and cumulative area. Then we reviewed and interpreted weather maps at ground level, elevation Maps, humidity maps and omega maps at 850 hPa level. Survey maps showed Tongue of immigrant anticyclons in North West Europe that usually is deployed on the Black Sea will advection cold air from the above widths on the Caspian sea and is transmited very wet weather to the south and West south Caspian Sea. After analyzing weather maps, the next step is obtain  to water for showers.To calculate the rain water the best way is getting the hottest adiabatic saturation that occurs with the maximize the dew point temperature and wind speed. After obtaining the maximum dew point and wind speed factor, we would like to calculate the coeffcient storm. After obtaining the coefficients of the storm,obtained its P.M.P by multiplying the amount of rainfall for each storm.

     According to the obtained PMP,was adopted rainfall continued for 24 hours with the numbers 276/95. PMP obtained showed that the storm dated 2/10/2001 of 24-hour duration, has been most intense and pervasive from the two other samples.


Dr Hassan Lashkari, Miss Neda Esfandiari,
Volume 7, Issue 2 (8-2020)
Abstract

Identification and synoptic analysis of the highest precipitation linked to ARs in Iran
 
              Abstract
        Atmospheric rivers (ARs) are long-narrow, concentrated structures of water vapour flux associated with extreme rainfall and floods. Accordingly, the arid and semi-arid regions are more vulnerable to this phenomenon. Therefore, this study identifies and introduces the highest precipitation occurred during the presence of ARs from November to April (2007-2018). The study also attempted to demonstrate the importance of ARs in extreme precipitation, influenced areas and identifies the effective synoptic factors. To this end, integrated water vapour transport data were used to identify ARs, and documented thresholds applied. AR event dates were investigated by their daily precipitation, and eventually, ten of the highest precipitation events (equivalent to the 95th percentile of maximum precipitation) associated with ARs were introduced and analyzed. The results showed that most ARs associated with extreme precipitation directly or indirectly originated from the southern warm seas. So the Red Sea, the Gulf of Aden and the Horn of Africa were the major source of ARs at the time of maximum IVT occurred. Synoptically, seven AR events formed from the low-pressure Sudanese system and three events from integration systems. The subtropical jet was the dominant dynamic of the upper troposphere, which helped to develop and constant of ARs. Moreover, the predominant structure of jets had a meridional tendency in Sudanese systems, while it was a zonal orientation in integration systems. The intense convective flows have caused extreme precipitation due to the dominance of strong upstream flow besides having the highest moisture flux. The station had the highest precipitation has been located in the eastern and northwestern region of the negative omega field or upstream flows.
 
        Keywords: Identification and synoptic analysis, highest precipitation, Ars, Iran.


Dr Hasan Lashkari, Mrs Mahnaz Jafari,
Volume 8, Issue 1 (5-2021)
Abstract

Synoptic Patterns that Determine the Trajectory of Precipitation Systems of Sudanese Originntroduction
 
Introduction
Precipitation as an important climatic element has many irregularities and fluctuations. Iran, especially its southern half, has significant precipitation fluctuations. Several atmospheric systems are involved in the formation of precipitation in this region from of Iran. Sudanese system is one of the most important precipitation systems in Iran. This system, in different synoptic conditions, enters Iran from different input sources and passes through Iran in different ways.
The important and influential role of Sudan's low pressure on precipitation in Iran, especially in the southern part of the country, has been repeatedly demonstrated in numerous studies. But the formation and its expansion have received little attention. These reasons have led to the consideration of the position of Sudan's low-pressure synoptic expansion as an influential factor in the southern half of Iran precipitation. Therefore, the position of the expansion of this important climatic system has been investigated separately in the precipitation of the three regions south west, south middle and south east.
 
Materials and Methods
Two categories of data were used for this study. These data include daily precipitation data from the Iranian Meteorological Organization and the ERA interim gridded data include Sea Level Pressure (SLP) and the Geopotential Height of the 700 HP atmospheric level of the ECMWF. Second category data with horizontal resolution of 0.5 × 0.5°  degrees during 1997-2017 statistical period were prepared.
To achieve the purpose of the study, the southern half of Iran was first divided into three regions: South-West, South-Mid and South-East. After extracting daily precipitation of the selected stations in all three geographic regions, a total of 142 precipitation systems was identified by applying the required criteria. From this number of precipitation systems, respectively, were obtained in the south west 107, south middle 19 and southeast 16, respectively. Then, the source of precipitation systems was extracted using the atmospheric lower level maps. Subsequently, the central core and zone of the first closed curve around the Sudanese low pressure were extracted separately for each group. The main axis of the Sudanese low-pressure trough are also drawn on all rainy day. Finally, the model or pattern of atmospheric circulation in the precipitation systems of the regions is presented separately.
 
Results and Discussion
The purpose of this study was to determine the position of the central core and the pattern of expansion of the first closed curve around the Sudanese system and the Sudanese system trough in precipitation in each of the three regions of the southern half of Iran. Since the arrangement of precipitation systems may vary in different months of the year, depending on the general atmosphere of the atmosphere, the position of the core, the pattern of expansion of the low-pressure trough and the trough of 700-hPa atmospheric level is analyzed separately each month.
In the synoptic pattern of systems, entering from the south west of Iran, the Arabian Subtropical High Pressure with the southwest-northeast direction is located in the eastern half of the Arabian Peninsula and west of the Oman Sea. In this pattern, the troughs are generally north-south. As a result, the rainfall intensity and intensity of precipitation systems, entering the south west of Iran are higher than the other two routes. The focal point of troughs this route is between 30 to 40° east (Eastern Mediterranean). In systems with South-Mid route, the Arabian Subtropical High Pressure has slightly shifted southward and found a northeast-southwest axis. In this pattern, the Mediterranean troughs are generally northeast-southwest. This pattern causes precipitation in the eastern half of the Iran. Or at least no precipitation in the northwest and west of the Iran.
The synoptic pattern of precipitation systems that enter Iran from the southeast is somewhat more complex. In this pattern, the Arabian Subtropical High Pressure has an unusual eastward shift. So that it is based in India. The troughs of this path showed two completely opposite patterns. In some systems, the troughs in the southwest-northeast direction with the orbital inclination, covers the whole of Saudi Arabia and southern Iran. On the contrary, in some systems the troughs stretch quite opposite to the first group, the northwest-southeast direction.
This asymmetry in the expansion of the troughs should be traced to the general topography of the Tibetan Plateau and the circulation pattern of caused by the presence of the Tibetan anticyclone. Basically Mediterranean troughs are disrupted in their usual eastward displacement after a longitude of 60 degrees. As you can see, the Sudanese low-pressure troughs for the South-East Route lack structural discipline and coordination.
 
Conclusion
The results of this study show that the location and pattern of expansion of the first closed curve around low pressure in different precipitation months and systems of the three zones do not differ significantly in location. Rather, it is the most important system in determining the direction of Sudanese systems, the Arabian Subtropical High Pressure and the pattern of expansion of the eastern Mediterranean trough. In the synoptic pattern of systems, entering from the south west of Iran, the Arabian Subtropical High Pressure with the southwest-northeast direction is located in the eastern half of the Arabian Peninsula and west of the Oman Sea. In this pattern, the troughs are generally north-south. In systems with South-Mid route, the Arabian Subtropical High Pressure has slightly shifted southward and found a northeast-southwest axis. In this pattern, the Mediterranean troughs are generally northeast-southwest. The synoptic pattern of precipitation systems that enter Iran from the southeast is somewhat more complex. In this pattern, the Arabian Subtropical High Pressure has an unusual eastward shift. So that it is based in India. The Sudanese low-pressure troughs for the South-East Route lack structural discipline and coordination. This asymmetry in the expansion of the troughs should be traced to the general topography of the Tibetan Plateau and the circulation pattern of caused by the presence of the Tibetan anticyclone.
 
Keywords: Synoptic Patterns, Sudanese Low Pressure system, Eastern Mediterranean Trough, Southern Half of Iran, Arabian Subtropical High Pressure.
 
 
 
Dr Hassan Lashkari, Dr Zainab Mohammadi,
Volume 9, Issue 1 (5-2022)
Abstract

Synoptic analysis of the changes trend of the share of systems due to the Sudan low
In the cold period of the Persian Gulf coast during 1976-2017


 Introduction
In the Ethiopian-Sudan range forms the low pressure system without front in the cold and transition seasons that is affecting the climate of the adjacent regions by crossing the Red sea. Based on the evidence in the context of Iran, studying Sudan low was first begun by Olfat in 1968. Olfat refers to low pressures which are formed in northeastern Africa and the Red Sea and then pass Saudi Arabia and the Persian Gulf, enter Iran, and finally, cause rainfall. The most comprehensive research specifically examining Sudan low, was the work carried out by the Lashkari in 1996. While he studying the floods that occurred in southwestern of Iran, he was identified Sudan low by the most important cause of such flooding and he explained how they are formed, and how these low-pressure systems were deployed on the southwest of Iran.

 Materials and methods
The study period with long-term variations was considered from 9.5 to 11 years based on solar cycles. Precipitation data for 13 synoptic stations are considered above 5 mm in south and southwestern Iran. With three criteria were determined for the days of rainfall caused by each type of atmospheric system. The visual analysis of high and low altitude cores and geopotential height at 1000 hPa pressure level (El-Fandy, 1950a; Lashkari, 1996; 2002) were considered based on the aim of the study. Accordingly, the approximate locations of activity centers, as well as the range of the formation and displacement of the Sudan system were initially identified based on the location of the formation of low and high-pressure cores. Then, the rainy days due to the Sudan system in January were separated from the precipitation of the other atmospheric system.

 Results and discussion
According to the selected criteria in the forty-year statistical period, 507 precipitation systems were identified with different continuities that led to precipitation in the northern coast of the Persian Gulf. The pattern of independent Sudan low rainfall was responsible for 77% of the precipitation in the Persian Gulf. Decade frequency share of Sudan low was lower in the first decade (16%) compared to the next three decades. This system of rainfall was more activated during the second and third decades compared to the first decade. However, rainfall changes were not evident in the mid-decade. Independent Sudan low precipitation provide 25% and 27% of the cold season precipitation of the Persian Gulf during the second and third decades respectively. In accordance with the 24th solar cycle, at the end of the study period, the Sudan low was more effective on the Gulf coast than ever before. During this decade, 125 cases of Sudan low rainfall was recorded for the Persian Gulf. Thus, the frequency of Sudan low during the fourth decade was about 31%, which was higher than in the rest of the decade. Overall, the Sudan low rainfall was repeated 151 times for 2 days rainfall, during the statistical period studied. This Precipitation has increased over the last decades compared to other periods.

 Conclusion
The severe variability of rainfall along the timing and location of the permanent Persian Gulf coasts can have a significant impact on the economic and agricultural behavior of the Gulf population in the three provinces of Ahwaz, Bushehr and Hormozgan.The purpose of this study was to evaluate the precipitation changes due to Sudan low in the Persian Gulf coastal region during the cold period. The results of this study showed that the role of integration patterns in influencing the precipitation of the Persian Gulf coast has decreased with the strengthening and further activation of the Sudan low system during the last two decades. That way, about 77percent of the region's rainfall is provided by independent Sudan low. At the end of the course (in accordance with 24th solar cycle activity) the Sudan low system was more active than before. Although the Sudan low activity was different at each station during the period studied, but in the historical passage incremental and decade's positive behavior of Sudan low was common to all stations. Evaluation of changes in rainfall duration shows that the pattern of precipitation with 2days duration is more frequent than the patterns of one to several days.

Keywords: Sudan low- Solar cycle- Persian Gulf.


 
Hassan Lashkari, Fahimeh Mohammadi,
Volume 9, Issue 3 (12-2022)
Abstract



Synoptic analysis of the changes trend of the share of systems due to the Sudan low
In the cold period of the Persian Gulf coast during 1976-2017


 Introduction
In the Ethiopian-Sudan range forms the low pressure system without front in the cold and transition seasons that is affecting the climate of the adjacent regions by crossing the Red sea. Based on the evidence in the context of Iran, studying Sudan low was first begun by Olfat in 1968. Olfat refers to low pressures which are formed in northeastern Africa and the Red Sea and then pass Saudi Arabia and the Persian Gulf, enter Iran, and finally, cause rainfall. The most comprehensive research specifically examining Sudan low, was the work carried out by the Lashkari in 1996. While he studying the floods that occurred in southwestern of Iran, he was identified Sudan low by the most important cause of such flooding and he explained how they are formed, and how these low-pressure systems were deployed on the southwest of Iran.

 Materials and methods
The study period with long-term variations was considered from 9.5 to 11 years based on solar cycles. Precipitation data for 13 synoptic stations are considered above 5 mm in south and southwestern Iran. With three criteria were determined for the days of rainfall caused by each type of atmospheric system. The visual analysis of high and low altitude cores and geopotential height at 1000 hPa pressure level (El-Fandy, 1950a; Lashkari, 1996; 2002) were considered based on the aim of the study. Accordingly, the approximate locations of activity centers, as well as the range of the formation and displacement of the Sudan system were initially identified based on the location of the formation of low and high-pressure cores. Then, the rainy days due to the Sudan system in January were separated from the precipitation of the other atmospheric system.

 Results and discussion
According to the selected criteria in the forty-year statistical period, 507 precipitation systems were identified with different continuities that led to precipitation in the northern coast of the Persian Gulf. The pattern of independent Sudan low rainfall was responsible for 77% of the precipitation in the Persian Gulf. Decade frequency share of Sudan low was lower in the first decade (16%) compared to the next three decades. This system of rainfall was more activated during the second and third decades compared to the first decade. However, rainfall changes were not evident in the mid-decade. Independent Sudan low precipitation provide 25% and 27% of the cold season precipitation of the Persian Gulf during the second and third decades respectively. In accordance with the 24th solar cycle, at the end of the study period, the Sudan low was more effective on the Gulf coast than ever before. During this decade, 125 cases of Sudan low rainfall was recorded for the Persian Gulf. Thus, the frequency of Sudan low during the fourth decade was about 31%, which was higher than in the rest of the decade. Overall, the Sudan low rainfall was repeated 151 times for 2 days rainfall, during the statistical period studied. This Precipitation has increased over the last decades compared to other periods.

 Conclusion
The severe variability of rainfall along the timing and location of the permanent Persian Gulf coasts can have a significant impact on the economic and agricultural behavior of the Gulf population in the three provinces of Ahwaz, Bushehr and Hormozgan.The purpose of this study was to evaluate the precipitation changes due to Sudan low in the Persian Gulf coastal region during the cold period. The results of this study showed that the role of integration patterns in influencing the precipitation of the Persian Gulf coast has decreased with the strengthening and further activation of the Sudan low system during the last two decades. That way, about 77percent of the region's rainfall is provided by independent Sudan low. At the end of the course (in accordance with 24th solar cycle activity) the Sudan low system was more active than before. Although the Sudan low activity was different at each station during the period studied, but in the historical passage incremental and decade's positive behavior of Sudan low was common to all stations. Evaluation of changes in rainfall duration shows that the pattern of precipitation with 2days duration is more frequent than the patterns of one to several days.

Keywords: Sudan low- Solar cycle- Persian Gulf.





 

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb