Search published articles


Showing 7 results for Riahi

Farhad Azizpour, Vahid Riahi, Ali Moazeni,
Volume 1, Issue 3 (10-2014)
Abstract

Environmental hazards are considered as one of the main obstacles for achieving sustainable human settlements development (particularly in rural areas). Today, with a new look at crisis management, using all managerial, organizational and planning accomplishments before the crisis, is an essential and rational concern. Rural settlements of the country along with cities always are threatened by a variety of environmental hazards, but what makes these spaces different from the cities is the high-intensity of vulnerability due to its physical decay texture. In this regard, one of the key elements in confronting the possible crisis that must be taken into account is the crisis management bases in which all prevention, preparedness and response measures, including disaster relief, temporary accommodation for the injured, etc. is provided and minimizes the consequences of potential crisis. Being located in the Kahrizak fault zone and the placement of hazardous industries in this region, is the main reason for selecting Kahrizak district as a study area in this research.    To achieve goals of constructing crisis management bases which indeed is the tactic ability of crisis management system (CMS), it is required to set the site selection criteria and standards for constructing them in such a way that provide more operational activities and develop the level of their impacts. In this regard, in the first step, the final criteria for site selection of crisis management base were selected after reviewing previous studies. Then, after surveying the experts and also the localization of criteria on the basis of area condition, seventeen final criteria were determined. For quantitative criteria, data were collected through organizations and reference centers and for a single qualitative criterion (cultural convergence), the questionnaire instrument used in gathering data. After collecting data using library and field methods, a combination of two models: fuzzy logic and hierarchical analysis process (AHP) applied for optimal location of crisis management base.    To determine the impact level of each criterion in the site selection process in two above-mentioned models, the standards for each of the seventeen criteria was determined with the help of combination method. The standards of some of the criteria determined using the standards in related organizations and some other standards proposed by experts and also through the localization by the researcher. Afterward, initially fuzzy standardized common scale maps produced from all information layers in a raster format. Then selected criteria by experts in the format of AHP model were compared with each other through pairwise comparison method. As a result of this comparison, the weight of criteria was determined which indicates the preference degree of each criterion over the others. At last, all standardized (fuzzified) layers multiplied in each of the final weight resulting from Analytical Hierarchy Model and in total converted into weighted fuzzy layers. In the next step, following the process of fuzzy model, fuzzy addition and multiplication operators were applied on output layers. Finally, to modify the layer resulting from fuzzy addition and multiplication, the Gamma operator was used. As such, after producing layers of different fuzzy gammas, essential assessment was conducted for selecting appropriate and ideal gamma. In order to do this, produced layers of each fuzzy gammas were compared with the study area for optimal location and the establishment of crisis management base. Since the gamma 0.9 had the most conformity to suitable zone in the layers of study area, it was selected as the appropriate gamma. However, to ensure the selected location, field study was conducted.     According to the research findings, the following conclusions were obtained: Site selection criteria for rural crisis management base not only has an environmental essence (built and natural), but socio –economic criteria are important as well Effective criteria for site selection of rural crisis management base, affected by regional and local requirements are not the same. Localization of criteria is a necessity that should be considered in site selection. Standards based on site selection criteria depending on the type of services, goals and location at multiple spatial levels (regional, local, urban and rural) is different: in the other words one size does not fit all Site selection is not only based on the location within overlaying information layers by using the models, but the final choice is done after field evaluation and visit.


Khadijeh Karimi, Vahid Riahi, Farhad Azizpour, Aliakbar Taghilo,
Volume 4, Issue 2 (7-2017)
Abstract

Human settlements as local -spatial systems are subject to continuous dynamism and transformation. In the meantime, rural settlements including; in Iran, as the most important establishment of population and activity, are exposed to the deepest environmental, ecological, social, economic and cultural changes. It is evident that in these developments, a variety of different and different forms of internal and external interactions Are creative However, most of these factors are somehow influenced by the management system that plays a role in the rural areas. This system, having different patterns, has a different effect on spatial systems.
The issue of drought has recently been the major concern all over the country and particularly in Urmia Basin. This is considered as a key factor in Urmia Lake crisis. Urmia's rural settlements are also affected by the management  factor in a variety of spatial dimensions. The crisis of the dramatic decrease in Urmia Lake water and its management (decisions making) has posed a serious challenge to rural areas. This article  to pursue to base management as a foreign  factor on the basis of a good governance approach to the analysis and analysis of the role It focuses on the transformation of rural settlements in Urmia.
 This research is applied in terms of its purpose and based on descriptive-analytical method. The statistical population of the study was the experts in the institutions related to the county crisis management. Experts from sample target communities were 70 people who were identified by a sample size determination method with an unknown community. A sample sampling method was used to select the samples. Data and information was collected using library and information technology. The questionnaire was used to assess the role of the management system in the framework of the components of a good governance approach and Referring to related research backgrounds, they were identified. To measure the normal distribution of data and appropriate regression selection, Kolmogorov-Smirnov and Dorbin Watson's tests were used. Also, for measuring the direct and indirect effects and the correlation between the components, Pearson's path analysis and Pearson correlation tests were used in SPSS software.
The findings of the research shows that the villages affected by the disaster management system in facing the risk of drying the Lake Urmia have encountered inappropriate environmental, social, economic and physical changes. These changes are influenced by the military mechanism that It is not due to being state-owned, focused, and open-minded; they are not accountable, legitimate, and efficient. In the meantime, the weakness of the legitimacy of failure in effective performance has had a direct impact on the disaster management inefficiency. Of course, other components such as weakness of pivotal justice, weakness of accountability, weakness of orientation affect the components of the weakness of legitimacy and weakness of the role Effectiveness has doubled disaster management inefficiencies.
The assessment of the disaster management system of Lake Urmia, based on the governance framework, indicates that the management system has not been efficient. This ineffectiveness, however, is heavily influenced by the weakness of legitimacy. But, indirectly influenced by other factors, including weakness of orientation, weakness of justice, and weakness of accountability. The important thing in this regard is the impact of the indirect factors on the legitimacy factor. By considering the nature of their direct and indirect factors, it is clear that the weak role of the villagers and the means to participate in disaster management, the cause of all problems In the countryside. Restoring Lake Urmia without paying attention to the villagers living around the Lake Urmia will be difficult. Therefore, giving villagers the role of the main beneficiaries of Lake Urmia Basin can help restore Lake Urmia.infact,Communities are the first responders in case of a disaster. Therefore, community-based disaster risk management should be the core of any risk reduction approach. community based  Disaster risk management focuses more on community participation and  reducing underlying risk, encouraging preventive action before a disaster. and  focuses on participation on design,  decision  and  performance for better management of disasters.

Mohammad Hajipour, Vahid Riahi, Golsar Hajipour,
Volume 6, Issue 1 (5-2019)
Abstract

Introduction

 There are two questions with all programs and efforts to industry development in Iran: I) How much is rate of environmental hazard of industries in each Iran regions? II) How much is rate of capital production of industrial sector to environmental damages in regions of Iran? 

 

Explanation and Interpretation of the Results

In recent years (2009-13), despite a reduction in the number of industrial workshops in the country as a whole, pollution and ecological damage to industries had more than doubled in the past; On the other hand, industries has been more conflict with the environment increasingly in Iran and has led to the growth of human environment hazards with increase of damage to natural environment. Also, from a regional point of view, wherever more industry is not more damage to environment by industry necessarily. Factors such as “obsolete instruments in industry”, “low level of technology”, “insufficient skills and expertise of the activists in industry” and “Inattention of managers and industrialists to environmental health” has been causes damage growing to environment. Space pattern suggests industrial sector risks accumulated within South West of Iran. As well as according to spatial changes trend, the risks are drawn towards central regions of the country. Among the provinces, Markazi province has been damage most to environment than any one million riyals added value of industry sector activities. As well as provinces such as Mazandaran, Bushehr, Fars, Isfahan, Ardebil and West Azarbaijan has been next ranks. Finally, it can be concluded that the environment health is not important for capital production from industrial sector of in the regions.


Dr Seyedmusa Hosseini, Miss Samaneh Riahi, Mr Abdolkarim Veysi,
Volume 6, Issue 1 (5-2019)
Abstract

The effect of Urban Development on Watershed Hydrological Properties (case study: Tajrish Watershed)
Throughout the human history, societies and rivers have been closely linked, so that the human civilization began from the riverside (Stevaux et al. 2009 (. The quantitative and qualitative characteristic of river is vulnerable to land-use changes (Kang et al. 2010). Natural and urban watersheds are influenced by the rapid land use change due to urban development (Furusho et al. 2013). Hence the importance of land use as an environmental variable have made its changes as a major issue in environmental changes and sustainable development) Verburg et al. 2009).
The development of urbanization and industrialization of cities and communities have undesirable effects on the hydrological response of watersheds. It increases the magnitude of runoff and contamination, reduces the base flow and the groundwater recharge. Hence, urban authorities are urged to pay more attention to the environmental damaging effects of the urbanization process and the increase of construction. In this regard, attention should be paid to the effect of type of land cover and land use on urban runoff and hydrological changes in surface flow. Tehran as the largest metropolis in Iran has ascending trend of land cover and land use changes due to the growing population.
In this research, the effect of urban development on the hydrological characteristics of the Tajrish sub-watershed (in Darband watershed) located north of Tehran has been investigated. Results of this study indicated that the river Darband is exposed to hydrological hazard due to human need for space and land use and land cover changes. The studied area is affected by decreasing pervious area, increase of runoff coefficient, and change in water quality parameters.
Darband River watershed consists of two streams of Darband and Golabdareh which are considered as the major rivers of the Tehran-Karaj Basin. This river originates from the mountains of the Tochal located in northern Tehran. The catchment area of Darband River in the studied area is 39.88 square kilometers.
In this study, aerial photos of years 1345, 1358 and also   and IkONOS images in year 2011 were used to detect the changes in land cover and land use in the Tajrish watershed. Pas-Ghale sub-watershed in upstream of Tajrish was selected as benchmark since its land use doesn't affected by human interventions. SCS-CN method developed by the United States Department of Agriculture (USDA) was used to estimate the quantitative changes in surface storage and runoff volume. Man-Kendall test was used for temporal trend detection of discharge and chemical parameters of surface water and also. The change of water type was identified annually using the Piper diagram in the aqQA software. Frequency analysis was carried out for peak discharge data using the weibull’s empirical method.
During three considered periods, the curve numbers (CN) and runoff coefficient (C) in Tajrish watershed significantly increased. Significant trend was also observed for the chemical parameters of surface flow in Tajrish. While the surface storage and initial abstraction ratio (λ) indicate decreasing trend.  Relationships of CN and λ with rainfall depth (P) were also computed for both studied watersheds. According to the Piper diagram, the distribution of ions in the cation diagrams at both Maghsudbeik and Pasghaleh stations is generally more directed toward sodium. In the triangles of anions, both of the stations studied tend to show more calcium biocarbon content. Presence of sodium ion in the surface water is due to igneous formations in the watershed. The surface water in Pasghale station, indicate a neutral type of water. Whereas, saline water type is detected in the Maghsudbeik station. The increase of urban utilization over the past three decades could be the main cause of changes in the hydro chemical characteristics and water type along the Darband River.
Investigation of land use changes in the Darband watershed indicate that the impervious surface has increased during years of 1996 to 2011. Results also indicate that the CN and λ values in Pas-ghale watershed are more correlated to Pin compared with ones observed in Tajrish. The results also reveal that hydrological modeling in watersheds undergoes land use changes and urbanization will result in imprecision results.
 Many chemical parameters of the water quality of Darband River have been increasing at the Maghsudbeik station such as Chlorine, sulfate, sodium, electric conductivity and TDS and in the coming years, it can be considered inappropriate in terms of agriculture in the water class.
 
Keywords: Darband River, land cover and land use, Piper diagram, SCS-CN.
 
 
Farhad Azizpour, Vahid Riahi, Somayeh Azizi,
Volume 7, Issue 4 (2-2021)
Abstract

 Abstract
As information about disease and mortality grows, so do appropriate methods for analyzing this type of data that meet different needs. One of these methods is spatial analysis of the disease, which considers its geographical distribution along with other risk factors. The present study is an attempt to depict the spatial pattern of coronary heart disease distribution in rural settlements of Damavand and to explain the factors affecting the spatial distribution of this disease in the study area. Spatial analysis of corona prevalence using spatial statistics analysis methods can extract and analyze the spatial patterns governing the geographical distribution of this disease. For this purpose, the present study seeks to answer the following questions:
  1. What pattern does the spatial distribution of coronary heart disease in the rural area of Damavand city follow?
  2. What factors have influenced this spatial distribution pattern?
Due to the nature of the subject, the present study is of the combined type and in terms of applied results. The method of data collection is based on documentary-library and survey-field data. Initially, the statistics of the number of patients with coronary artery from the beginning of April 2020 to the end of July 2020 were collected by referring to Damavand health center. Then spatial analysis is applied to them. In order to study the spatial pattern of corona disease distribution and to recognize its non-random structure from various statistical indicators such as mean, percentage, hot spot analysis and also to properly understand the pattern of hot spot clusters by measuring directional geographical distribution (standard ellipse) in GIS software environment. Used. After describing the structure and pattern of dispersions, one should look for the cause and reasons of dispersions. Thus, in field surveys, after determining the number of patients with coronary artery disease, snowball interviews were conducted with 23 residents of Damavand city in order to identify and analyze the factors affecting the spatial distribution pattern of coronary heart disease in this city. After conducting the interviews and collecting the data, in order to analyze them, the underlying theory in the Maxiquida software environment was used. Pearson correlation coefficient was used to determine the relationship between the factors affecting the prevalence of the disease in the study area as independent variables with coronary heart disease as a dependent variable in SPSS environment. Then, Moran's spatial autocorrelation analysis model was used to know the type of distribution pattern of the identified factors.
This part of the findings is divided into two parts according to the questions raised in the research:  Spatial distribution pattern of coronary heart disease in rural areas of Damavand city Out of a total of 67 villages, 21 rural points (31.34%) and 1 rural point (1.49%), respectively, have the lowest and highest number of patients with coronary heart disease. Based on the analysis of clusters of hot spots and elliptical curve of geographical distribution, most hot spots are located in the west and northwest of the city and the villages located in these spots with low health centers have almost high population density that are adjacent to each other and They are close to the cities and on the main road. Most of the cold spots are located in the east and southeast of the region.
Factors affecting the distribution pattern of coronary heart disease in rural areas of Damavand city After determining the spatial pattern of corona disease distribution in the rural area of ​​Damavand city, the effective factors in the spatial distribution pattern of this disease should be identified and analyzed. These factors include: Weak official information on coronary heart disease; Weak local community attention to the principles of health exposure to corona risk; Simplifying the risk of coronary heart disease; Short geographical distance between settlements; High level of inter-residential interactions; Weakness in providing health services. Pearson correlation coefficient was used to determine the relationship between the factors affecting the prevalence of the disease in the study area as independent variables with coronary heart disease as a dependent

Parastou Darouei , Parviz Zeaiean, Farhad Azizpour, Vahid Riahi,
Volume 10, Issue 3 (9-2023)
Abstract

Introduction
Agricultural activities, as a foundation of growth and development and part of the rural development process, guarantee the economic life of many villages in the country. However, in recent years, other products' water scarcity and resource limitations have affected these activities. This issue has severely challenged the sustainability and life of rural settlements.
In this regard, organizing and developing an optimal cropping pattern is necessary to achieve the goals of sustainable agricultural and rural development in Iran. To achieve this goal, the cultivation of crops must be commensurate with the capabilities of production resources, especially water resources.
Therefore, determining the appropriate spatial distribution of agricultural lands for the cultivation of various crops is one of the primary foundations for implementing optimal cropping pattern. Accordingly, the present study seeks to identify suitable spatial zoning for wheat and barley cultivation as the main crops in agricultural lands in traditional Lenjanat regions, which are exposed to a growing water crisis.

Data and Methodology
According to the main purpose of the research, the data obtained from spatial distribution maps of current cropping patterns and spatial distribution of suitable lands for crop cultivation.
This study prepared the suitability maps of the major agricultural products at a distance of 10 km on both sides of Zayandeh Rud River in Lenjanat region using multi-criteria decision-making methods.
Thus, the agronomic-ecological needs of the two major crops in the area (wheat and barley) were determined, and a standard map for each crop was classified using ArcGIS software. Then, the digital layers were combined by allocating the weight obtained from the Analytical Hierarchy Process and the Simple Additive Weighting method. Finally, talent assessment and land zoning was performed in four categories from unsuitable to very suitable for cultivating wheat and barley crops. Using the analytical hierarchy process method and experts' opinions led to high accuracy results.

Results and Discussion
The results of the land suitability map showed that 90.6% of the agricultural lands in the study area are very suitable and relatively suitable for the cultivation of the wheat crop. The northern and eastern regions, located in Falavarjan county and the north part of Mobarakeh county, are the most suitable areas for wheat cultivation. As we move from the north and east to the west of the study area, the capability areas for wheat cultivation decrease. Limiting factors in these areas are unsuitable soil texture, low temperature, shallow soil, high slope, low rainfall and drainage.
As for barley cultivation, a large part of the area, equal to 30635.3 hectares (more than 91%), is very suitable and relatively suitable. In these areas, in the northern and eastern parts of Lenjanat, unsuitable soil texture, shallow soil, high slope and low drainage are the most critical limiting factors for barley cultivation.
A comparison of "spatial distribution of land suitability" with "spatial distribution of cropping pattern" shows that the crops in this study (wheat and barley) have been cultivated in a suitable area in terms of the ecological potential of lands.

Conclusion
The results of this evaluation can be used in the spatial distribution of the optimal cropping pattern to select a suitable cultivation site for these two crops and other existing and alternative crops.
Wheat and barley are the major crops usually used in planning optimal cropping patterns, regardless of the economic issues. Considering suitable spatial distribution for wheat and barley, they should be distributed in such a way with the slightest difference compared to the current cropping pattern. On the other hand, a large area of the Lenjanat region is suitable for cultivating wheat and barley. In addition, an agricultural unit may have different capacities for other crops, so it is necessary to pay attention to the ecological potential of other crops. Wheat and barley should be cultivated in lands which are unsuitable or semi-suitable for other crops.
Accordingly, it is necessary to provide spatial zoning of existing and alternative crops in the Lenjanat area with fewer water requirements and higher economic benefits to be introduced in the optimal cropping pattern.
In this study, only agronomic-ecological criteria and needs with available data were examined due to data limitations in assessing crop suitability. Therefore, completing land suitability maps by considering more evaluation criteria such as evapotranspiration and the amount of water available is recommended.
Also, to have a "spatial distribution of the optimal cropping pattern", paying attention to the ecological potential of the lands, also considering other criteria and priorities such as natural, socio-cultural, economic and political criteria is necessary. So, we can develop a cropping pattern that provides a basis for desirable space dynamics.

Mrs Samaneh Riahi, Dr Amir Safari, Dr Seyed Musa Hisseini, Dr Ali Ahmadabadi,
Volume 11, Issue 2 (8-2024)
Abstract

In order to plan, manage and exploit water and land resources, awareness of the spatial variability of resources, as well as understanding the response behavior of the watershed in order to model physical processes, has an identical significant role. Due to its location in arid and semi-arid areas, special climatic and geomorphological conditions, Qom-Roud basin is prone to flash floods. Due to the lack of hydrometric and topographical data with high accuracy in the basin, the use of hydraulic models does not lead to accurate results of the hydraulic characteristics of floods. In such a situation, the methods based on the geomorphological features of the basin can be advantageous. In this article, Variable flood stage method (VFS) method is used, which combines the hydraulic characteristics of the river with the geomorphic characteristics of the basin in order to estimate the water depth in the river caused by floods with different return periods. The water depth was investigated for different return periods of two, five, ten, twenty-five, fifty and hundred years. In each period, the highest water depth was in the parts near the outlet and the lowest water depth was in the upstream parts of the river. The research illustrations there is a direct relationship between the depth of water and the area of the sub-basin. The results of this research can be used for basins without hydrometric and topographic statistics with high accuracy in order to estimate the peak speed and flood depth.
 

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb