Mr Alireza Sadeghinia, Mrs Somayeh Rafati, Mr Mehdi Sedaghat,
Volume 8, Issue 4 (3-2022)
Abstract
Introduction
Climate change is the greatest price society is paying for decades of environmental neglect. The impact of global warming is most visible in the rising threat of climate-related natural disasters. Globally, meteorological disasters more than doubled, from an average of forty-five events a year to almost 120 events a year (Vinod, 2017). Climate change refers to changes in the distributional properties of climate characteristics like temperature and precipitation that persist across decades (Field et al., 2014). Because precipitation is related to temperature, scientists often focus on changes in global temperature as an indicator of climate change. Valipour et al. (2021) reported the mean of monthly the global mean surface temperature (GMST) anomalies in 2000–2019 is 0.54 C higher than that in 1961–1990. Many studies have been done on climate change in Iran. These studies have mostly studied the mean and extreme temperature trends (Alijani et al., 2011; Masoudian and Darand, 2012). In general, the results of previous studies showed that the statistics of mean, maximum and minimum air temperature in most parts of the Iranian plateau have increased in recent decades. Also, the increase of minimum temperature is greater than maximum temperature.
A review of the research background shows that we need to understand more about regional climate change in Iran. Therefore, present study performs the climate change of 14 extreme temperature indices using multivariate statistical methods at the regional scale.
Data and methodology
Historical climate observations including daily maximum and minimum temperature were obtained from the Iranian Meteorology Organization for the period 1968 to 2017 at 39 stations. In this paper, 14 extreme temperature indices defined by ETCCDI were analyzed. The indices are as follows: (1) Annual maxima of daily maximum temperature (TXx); (2) Annual maxima of daily minimum temperature (TNx); (3) Annual minima of daily maximum temperature (TXn); (4) Annual minima of daily minimum temperature (TNn); (5) Cold nights (TN10p); (6) Cold days (TX10p); (7) Warm night (TN90p); (8) Warm day (TX90p); (9) Frost days (FD); (10) Icing days (ID); (11) Summer day (SU); (12) Tropical nights (TR); (13) The warm spell duration index (WSDI) and (14) the cold spell duration index (CSDI). The extreme temperature indices were extracted using R software environment, RclimDex extension. The Mann–Kendall Test and Sen’s Slope Method was employed to assess the trends in 14 extreme temperature indices. To identify homogeneous groups of stations with similar annual thermal regimes, Principal Component analysis (PCA) and Clustering (CL) was applied. Pearson correlation coefficient was used to investigate the relationship between height and trend slope.
Result
All the extreme temperature intensity indices (TXx, TNx, TXn, and TNn) showed increasing trends during 1968 to 2017. The increasing trends of TXx, TNx, TXn, and TNn were 0.2, 0.3, 0.44, and 0.5 ° C per decade, respectively. These results indicated that the extreme warm events increased and the extreme cold events decreased. The average of the extreme temperature frequency indices over Iran showed that the frequency of warm night (TN90p) and warm day (TX90p) significantly increased with a rate of 6.9 and 4.2 day per decade, respectively. Also, the frequency of cold night (TN10p) and cold day (TX10p) significantly fell with a decrease rate of 3.8 and 3.8 day per decade, respectively. The frequency of warm nights (TN90p) was higher than that of warm days (TX90p). The result indicated that the trend of nighttime extremes were stronger than those for daytime extremes. The average of frost days (FD) and icing days (ID) indices over Iran showed decreasing trends during 1968 to 2017 with rates of 3 and 1.1 d per decade, respectively. While, the averaged of summer days (SU) and tropical days (TR) indices over Iran showed increasing trends with rates of 4.4 and 6.4 day per decade, respectively. The warm spell duration index (WSDI) indices showed a clear increase, with a rate of 2.1 per decade. In contrast the cold spell duration index (CSDI) showed a significant decrease, with a rate of 1.7 per decade. In general, the cold indices displayed decreasing trends, whereas the warm indices displayed increasing trends over most of Iran. Pearson correlation coefficient between height and Sen’s Slope was estimated to be equal to -0.62 (p < 0.01). In general, the results of this study showed that there is a negative correlation between the elevation factor and the Sen’s Slope of warm extreme indices. That is, as the altitude decreases, the Sen’s Slope increases. Therefore, the stations located in low altitude have experienced stronger increasing trends than in high altitude. The area of Iran was classified into four clusters using PCA and CL methods. Cluster 1 has experienced the strongest increasing trends. The average height of cluster 1 is 535 meters. Approximately 38% of the studied stations were located in cluster 1. Cluster 2 showed a moderate heating trends. 33% of the stations were located in cluster 2. Most of the stations of cluster 2 are located in the northwest and west of Iran. Cluster 3 showed a weak increasing trends compared to clusters 1 and 2. The stations of cluster 3 did not show a special geographical concentration and were scattered in all parts of Iran. 18% of the studied stations are located in cluster 3. The stations of Cluster 4, have experienced weak decreasing trends, which was different from the other three clusters
Conclusion
In this study we analyzed the climate change of extreme temperature indices in Iran. The result showed that the frequency of warm nights, warm days, summer days and tropical days increased. Also, the frequency of cold nights, cold days, Frost days and icing days decreased. The warm spell duration index showed a clear increase. In contrast the cold spell duration index showed a significant decrease. In general, the extreme warm events increased and the extreme cold events decreased over most of Iran. There is a negative correlation between the elevation factor and the Sen’s Slope of extreme warm indices (R = -0.62). Therefore, the stations located in low altitude have experienced stronger increasing trends than in high altitude. The area of Iran was classified into four clusters using PCA and CL methods. Cluster 1 has experienced the strongest increasing trends. The average height of cluster 1 is 535 meters. Therefore, the most heating have occurred in Low-lying areas of Iran. Cluster 2 and Cluster 3 showed a moderate and weak heating trends, respectively. The stations of Cluster 4, have not experienced clear trends.
Key words: climate change; Extreme temperature; clustering; Iran
Dr. Aliakbar Shamsipour, Dr. Hadis Sadeghi, Prof. Hosein Mohammadi, Dr. Mostafa Karimi,
Volume 9, Issue 4 (3-2023)
Abstract
Climate is one of the determining factors in the quantity and quality of agricultural products, therefore, in this study, the relationship between precipitation and temperature (as explanatory variables) with rice yield in 40 cities and wheat yield in 30 cities (as dependent variables) was investigated in the Caspian coastal area during 2000-2017. Spatial statistical analyses were performed with using the Moran autocorrelation test and geographically weighted regression. Based on the results (Moran index, z = 0.4342121 for rice and z = 0.719571 for wheat, respectively), it was revealed that the spatial distribution pattern of rice and wheat yield had a cluster pattern. The results of the geographic weighted regression analysis showed that the temperature increase was more desirable than the precipitation increase so the increasing temperature could lead to yield increases. In the eastern parts of the study area, the positive effect of precipitation on rice yield (with 0.020 to 0.540 regression coefficients) was remarkable; the results also revealed a negative relationship between temperature and rice yield in the southeast and eastern parts and a positive effect on rice yield in other areas. Also, the effect of precipitation on wheat yield was negative in the west and central parts of the study area (with -0.481 to -0.871 regression coefficients). According to the results, a negative relationship was dominant between temperature and wheat yield in the east and southeastern parts of the study area and a positive relationship was detected in other areas. Finally, the results indicated that in the western and central parts, due to heavy rainfall and a low number of sunny hours, an increase in temperature is more favourable than an increase in rainfall. In the eastern and southeastern regions of the region, where the amount of precipitation is lower than the threshold required for rice and wheat, an increase in precipitation is more desirable.
Hossein Hataminejad, Alireza Sadeghi,
Volume 10, Issue 3 (9-2023)
Abstract
Measuring urban resilience can help develop appropriate strategies and policies for cities facing unexpected shocks and their consequences. Since urban resilience is a complex concept and difficult to operationalize, developing a technique or method to actualize this concept is a major milestone in understanding the factors and interactions that help create and maintain resilience. Tehran's metropolis has a high concentration of industries, government organizations, services, and facilities, which makes its management very complicated when a natural disaster occurs. Previous conditions or inherent socio-economic characteristics show that Tehran is not immune from flood forces. In fact, it is important to measure resilience against urban disasters for areas located on rivers in Tehran due to its inherent characteristics and spatial-temporal changes of floods in the region. This research focuses on measuring the resilience of the areas located on the rivers of Tehran. The measurement approach is based on creating a composite index based on six dimensions of social, economic, institutional, infrastructure, social capital, and environmental resilience against floods. This research has been done by developing a mixed multi-criteria decision-making method. The AHP model has been used for prioritizing the selected indicators and the TOPSIS model has been used to rank the areas located on the rivers of Tehran city based on their resilience levels. The results show that region 22 is the most resilient region, while regions 4, 5, and 14 have the lowest resilience levels. The findings of this research can help urban planning organizations such as Tehran Research Planning Center to integrate disaster resilience in urban planning and change from reactive plans to preventive urban adaptive strategies such as risk-sensitive urban land use planning.